Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Variational convergence of the Scharfetter–Gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we explore the convergence of the semi-discrete Scharfetter–Gummel scheme for the aggregation-diffusion equation using a variational approach. Our investigation involves obtaining a novel gradient structure for the finite volume space discretization that works consistently for any non-negative diffusion constant. This allows us to study the discrete-to-continuum and zero-diffusion limits simultaneously. The zero-diffusion limit for the Scharfetter–Gummel scheme corresponds to the upwind finite volume scheme for the aggregation equation. In both cases, we establish a convergence result in terms of gradient structures, recovering the Otto gradient flow structure for the aggregation-diffusion equation based on the 2-Wasserstein distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguillon, N., Boyer, F.: Error estimate for the upwind scheme for the linear transport equation with boundary data. IMA J. Numer. Anal. 38(2), 669–719 (2018)

    Article  MathSciNet  Google Scholar 

  2. Alicandro, R., Cicalese, M.: A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36(1), 1–37 (2004)

    Article  MathSciNet  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media, Cham (2008)

    Google Scholar 

  4. Bailo, R., Carrillo, J.A., Hu, J.: Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure. Commun. Math. Sci. 18(5), 1259–1303 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bailo, R., Carrillo, J.A., Murakawa, H., Schmidtchen, M.: Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations. Math. Models Methods Appl. Sci. 30(13), 2487–2522 (2020)

    Article  MathSciNet  Google Scholar 

  6. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numerische Mathematik 121(4), 637–670 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)

    Article  MathSciNet  Google Scholar 

  8. Bhatia, R.: The logarithmic mean. Resonance 13(6), 583–594 (2008)

    Article  Google Scholar 

  9. Bouchitté, G., Fonseca, I., Leoni, G., Mascarenhas, L.: A global method for relaxation in \(w^{1, p}\) and in sbv\(^p\). Arch. Ration. Mech. Anal. 165(3), 187–242 (2002)

    Article  MathSciNet  Google Scholar 

  10. Cancès, C., Gallouët, T.O., Todeschi, G.: A variational finite volume scheme for Wasserstein gradient flows. Numerische Mathematik 146(3), 437–480 (2020)

    Article  MathSciNet  Google Scholar 

  11. Carrillo, J.A., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a gradient flow structure. Commun. Comput. Phys. 17(1), 233–258 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cheng, H.M., ten Thije Boonkkamp, J.H.M.: A generalised complete flux scheme for anisotropic advection-diffusion equations. Adv. Comput. Math. 47(2), 1–26 (2021)

    Article  MathSciNet  Google Scholar 

  13. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Springer, Cham (1993)

    Book  Google Scholar 

  14. Després, B.: An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids. SIAM J. Numer. Anal. 42(2), 484–504 (2004)

    Article  MathSciNet  Google Scholar 

  15. Duan, C., Chen, W., Liu, C., Yue, X., Zhou, S.: Structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions by an energetic variational approach. SIAM J. Sci. Comput. 43(1), B82–B107 (2021)

    Article  MathSciNet  Google Scholar 

  16. Erbar, M., Fathi, M., Laschos, V., Schlichting, A.: Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete Contin. Dyn. Syst. 36(12), 6799–6833 (2016)

    Article  MathSciNet  Google Scholar 

  17. Esposito, A., Heinze, G., Schlichting, A.: Graph-to-local limit for the nonlocal interaction equation. arXiv:2306.03475 (2023)

  18. Esposito, A., Patacchini, F.S., Schlichting, A.: On a class of nonlocal continuity equations on graphs. Eur. J. Appl. Math. 35(1), 109–126 (2024)

    Article  MathSciNet  Google Scholar 

  19. Esposito, A., Patacchini, F.S., Schlichting, A., Slepcev, D.: Nonlocal-interaction equation on graphs: gradient flow structure and continuum limit. Arch. Ration. Mech. Anal. 240(2), 699–760 (2021)

    Article  MathSciNet  Google Scholar 

  20. Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numerische Mathematik 102(3), 463–495 (2006)

    Article  MathSciNet  Google Scholar 

  21. P. A. Farrell and E. C. Gartland Jr. On the Scharfetter-Gummel discretization for drift-diffusion continuity equations. In: Computational Methods for Boundary and Interior Layers in Several Dimensions, pp. 51–79, 1991

  22. Forkert, D., Maas, J., Portinale, L.: Evolutionary \(\Gamma \)-Convergence of entropic gradient flow structures for Fokker-Planck equations in multiple dimensions. SIAM J. Math. Anal. 54(4), 4297–4333 (2022)

    Article  MathSciNet  Google Scholar 

  23. Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press, Oxford (2020)

    Google Scholar 

  24. Hraivoronska, A., Tse, O.: Diffusive limit of random walks on tessellations via generalized gradient flows. SIAM J. Math. Anal. 55(4), 2948–2995 (2023)

    Article  MathSciNet  Google Scholar 

  25. Il’in, A.M.: A difference scheme for a differential equation with a small parameter multiplying the second derivative. Mat. Zametki 6, 237–248 (1969)

    MathSciNet  Google Scholar 

  26. Jabin, P.-E., Zhou, D.: Discretizing advection equations with rough velocity fields on non-Cartesian grids. arXiv:2211.06311 (2022)

  27. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  Google Scholar 

  28. Jüngel, A.: Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 75(10), 783–799 (1995)

    Article  MathSciNet  Google Scholar 

  29. Lagoutieére, F., Santambrogio, F., Tien, S.T.: Discretizing advection equations with rough velocity fields on non-Cartesian grids. hal-04024118, (2023)

  30. Merlet, B.: \(L^\infty \)- and \(L^2\)-error estimates for a finite volume approximation of linear advection. SIAM J. Numer. Anal. 46(1), 124–150 (2008)

    Article  Google Scholar 

  31. Merlet, B., Vovelle, J.: Error estimate for finite volume scheme. Numerische Mathematik 106(1), 129–155 (2007)

    Article  MathSciNet  Google Scholar 

  32. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  Google Scholar 

  33. Pareschi, L., Zanella, M.: Structure preserving schemes for nonlinear Fokker-Planck equations and applications. J. Sci. Comput. 74(3), 1575–1600 (2018)

    Article  MathSciNet  Google Scholar 

  34. Peletier, M.A., Rossi, R., Savaré, G., Tse, O.: Jump processes as generalized gradient flows. Calcul. Variat. Partial Differ. Equ. 61(1), 33 (2022)

    Article  MathSciNet  Google Scholar 

  35. Peletier, M.A., Schlichting, A.: Cosh gradient systems and tilting. Nonlinear Anal. 231, 113094 (2023)

    Article  MathSciNet  Google Scholar 

  36. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev. 16(1), 64–77 (1969)

    Article  Google Scholar 

  37. Schlichting, A., Seis, C.: Convergence rates for upwind schemes with rough coefficients. SIAM J. Numer. Anal. 55(2), 812–840 (2017)

    Article  MathSciNet  Google Scholar 

  38. Schlichting, A., Seis, C.: Analysis of the implicit upwind finite volume scheme with rough coefficients. Numerische Mathematik 139(1), 155–186 (2018)

    Article  MathSciNet  Google Scholar 

  39. Schlichting, A., Seis, C.: The Scharfetter-Gummel scheme for aggregation-diffusion equations. IMA J. Numer. Anal. 42(3), 2361–2402 (2022)

    Article  MathSciNet  Google Scholar 

  40. Serfaty, S.: \(\Gamma \)-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete Contin. Dyn. Syst. 31(4), 1427 (2011)

    Article  MathSciNet  Google Scholar 

  41. ten Thije Boonkkamp, J.H.M., Anthonissen, M.J.H.: The finite volume-complete flux scheme for advection-diffusion-reaction equations. J. Sci. Comput. 46(1), 47–70 (2011)

    Article  MathSciNet  Google Scholar 

  42. Zeng, P., Zhou, G.: Analysis of an energy-dissipating finite volume scheme on admissible mesh for the aggregation-diffusion equations. J. Sci. Comput. 99(2), 39 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.H. and O.T. acknowledge support from NWO Vidi grant 016.Vidi.189.102 on "Dynamical-Variational Transport Costs and Application to Variational Evolution". A.S. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 – 390685587, Mathematics Münster: Dynamics–Geometry–Structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Tse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The \(\cosh \)-gradient structure, its tilt-dependence and its de-tilting

We link in this appendix a different possible gradient structure based on dissipation potentials based on the ‘\(\cosh \)’ to the gradient structure defined by the dual dissipation potential (1.7) and discussed in Sect. 3.3. We will see in Sect. A.1 that in the ‘\(\cosh \)’ case, the edge activity \(\vartheta ^{h,\rho }\) depends on the potentials \(V^h\), \(W^h\) and hence also \(\rho ^h\). The latter dependency would enforce stronger assumptions on the tesselation. Additionally, we point out that those dependencies are scaled by factors of \(\epsilon ^{-1}\) and hence become singular in the vanishing diffusion limit \(\epsilon \rightarrow 0\). Hence, one expects additional complications in proving EDP convergence for such a gradient structure.

Also from the modeling point of view, this dependence of the dissipation potential on the driving energy can be considered a drawback and unphysical, which we discuss in Sect. A.2. An in-depth discussion of tilt-dependent gradient systems, where changes in the driving energy can lead to changes in the dissipation potential, is carried out in [35]. Fortunately for the Scharfetter–Gummel scheme, it is possible to derive a tilt-independent gradient structure, which is better suited for proving EDP convergence uniform in the diffusivity \(\epsilon \ll 1\). We present a de-tilting of the ‘\(\cosh \)’ dissipation potential towards a tilt-independent dissipation potential in Sect. A.3.

1.1 The \(\cosh \)-gradient structure

We show that the Scharfetter–Gummel scheme (\({{{\textbf {SGE}}}_h}\)) defines a random walk that possesses a ‘cosh’ gradient structure by following a similar construction of [24]. To handle the nonlocal aggregation part in the energy, we follow the strategy introduced in [16] and define a local equilibrium to arrive at a suitable gradient flow formulation incorporating, such that the scheme would indeed fit into the frame developed in [24]. From the discrete energy \(\mathcal {E}_h\) given in (1.6), we identify the discrete gradient of its variational derivative as

$$\begin{aligned} \overline{\nabla }\mathcal {E}'_{\epsilon ,h}(\rho ^h) = \epsilon \overline{\nabla }\bigl (\log \rho ^h - \log \pi ^{\epsilon ,h,\rho } \bigr ), \end{aligned}$$
(A.1)

with

$$\begin{aligned} \pi ^{\epsilon ,h,\rho }_K = \frac{\vert {K}\vert e^{- \textsf {Q}_K^{h,\rho }/\epsilon }}{Z^{\epsilon ,h,\rho }},\qquad \textsf {Q}_K^{h,\rho } = V_K^h + \sum _{M\in \mathcal {T}^h} W_{KM}^h \rho _M^h, \end{aligned}$$
(A.2)

and \(Z^{\epsilon ,h,\rho } = \sum _{K\in \mathcal {T}^h} \vert {K}\vert e^{-\textsf {Q}_K^{h,\rho }/\epsilon }\) is the normalization such that \(\pi ^{\epsilon ,h,\rho } \in \mathcal {P}(\mathcal {T}^h)\). We note that the contribution of the variation of \(Z^{\epsilon ,h,\rho }\) in (A.1) cancels due to the discrete gradient.

The ‘cosh’ dual dissipation potential is given for all \(\rho ^h \in \mathcal {P}(\mathcal {T}^h)\) and \(\xi ^h \in \mathcal {B}(\Sigma ^h)\) by

$$\begin{aligned} \overline{\mathcal {R}}_{\epsilon ,h}^*(\rho ^h, \xi ^h) = \frac{1}{2} \sum _{(K,L)\in \Sigma ^h} \Psi ^*_\epsilon (\xi ^h_{K|L}) \sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \, \kappa ^{\epsilon ,h,\rho }_{K|L} \pi ^{\epsilon ,h,\rho }_K, \qquad {\bar{u}}_K^h = \frac{\rho _K^h}{\pi ^{\epsilon ,h,\rho }_K},\nonumber \\ \end{aligned}$$
(A.3)

where \(\Psi _\epsilon ^*(s) = 4 \epsilon ^2 (\cosh (s/2 \epsilon ) - 1)\). The idea is then to choose a jump kernel \(\kappa ^{\epsilon ,h,\rho }: \Sigma ^h \rightarrow [0, \infty )\) in such a way that it satisfies the local detailed balance condition

$$\begin{aligned} \kappa ^{\epsilon ,h,\rho }_{K|L} \pi ^{\epsilon ,h,\rho }_K = \kappa ^{\epsilon ,h,\rho }_{L|K} \pi ^{\epsilon ,h,\rho }_L \qquad \text { for all } (K,L)\in \Sigma ^h \text { and all } \rho ^h \in \mathcal {P}(\mathcal {T}^h). \end{aligned}$$
(A.4)

and allows representing the flux in the gradient form (3.4).

One possibility is to define the jump kernel as

$$\begin{aligned} \kappa ^{\epsilon ,h,\rho }_{K|L} :=\frac{1}{|K|}\frac{\tau _{K|L}^h}{\exp \big ({-\textsf {Q}_K^{h,\rho }/\epsilon }\big )} \frac{2\,q_{K|L}^h / \epsilon }{\exp (\textsf {Q}^{h,\rho }_L / \epsilon ) - \exp (\textsf {Q}^{h,\rho }_K / \epsilon )}, \qquad (K,L)\in \Sigma ^h,\nonumber \\ \end{aligned}$$
(A.5)

where we recall that \(\tau _{K|L}^h:=|(K|L)| / |x_L - x_K|\) is the transmission coefficient and

$$\begin{aligned} q_{K|L}^h :=V^h_L - V^h_K + \sum _{M\in \mathcal {T}^h} \rho ^h_M (W^h_{ML} - W^h_{MK}) = \textsf {Q}_L^{h,\rho }-\textsf {Q}_K^{h,\rho },\qquad (K,L)\in \Sigma ^h.\nonumber \\ \end{aligned}$$
(A.6)

Notice that the pair \((\kappa ^{\epsilon ,h,\rho }, \pi ^{\epsilon ,h,\rho })\) satisfies the local detailed balance condition (A.4), since \(\tau _{K|L}^h = \tau _{L|K}^h\) and \(q_{K|L}^h = - q_{L|K}^h\). The edge conductivity is then given by

$$\begin{aligned} \vartheta ^{\epsilon ,h,\rho }_{K|L} :=\frac{\tau _{K|L}^h}{Z^{\epsilon ,h,\rho }} \frac{2\, q_{K|L}^h / \epsilon }{\exp (\textsf {Q}^{h,\rho }_L / \epsilon ) - \exp (\textsf {Q}^{h,\rho }_K / \epsilon )}. \end{aligned}$$
(A.7)

The kernel defined in (A.5) satisfies the bound

$$\begin{aligned} \sup _{h>0} \sup _{K\in \mathcal {T}^h} h^2 \sum _{L\in \mathcal {T}^h_K} \kappa ^{\epsilon ,h,\rho }_{K|L} < \infty ,\qquad \text {where}\;\;\mathcal {T}^h_K:=\bigl \{L\in \mathcal {T}^h: (K,L)\in \Sigma ^h\bigr \}, \nonumber \\ \end{aligned}$$
(A.8)

provided \(\{(\mathcal {T}^h, \Sigma ^h)\}_{h>0}\) satisfy (A\(_\mathcal {T}\)). Indeed, for any \((K,L)\in \Sigma ^h\), it holds that

$$\begin{aligned} \kappa ^{\epsilon ,h,\rho }_{K|L} = \frac{|(K|L)|}{|K||x_K-x_L|} \frac{2\, q_{K|L}^h/\epsilon }{\exp (q_{K|L}^h/\epsilon ) - 1 } \le \frac{C_{d-1} h^{d-1}}{C_d \zeta ^{d+1} h^{d+1}} \Big (2 - \frac{q_{K|L}^h}{\epsilon } + o(h) \Big ) = O(h^{-2}). \end{aligned}$$

It is not difficult to see that the non-degeneracy assumption (A\(_\mathcal {T}\)) implies that [24]

$$\begin{aligned} \sup _{h>0} \sup _{K\in \mathcal {T}^h} \#\mathcal {T}^h_K < \infty , \end{aligned}$$

and thus also the asserted bound (A.8). However, we point out that the bound is non-uniform in \(\epsilon \ll 1\).

To apply the strategy from [24] directly, it is left to show that the choice of \(\kappa ^{\epsilon ,h,\rho }\) in (A.5) indeed gives rise to the Scharfetter–Gummel flux (1.2).

Lemma A.1

For any \(\rho ^h\in \mathcal {P}(\mathcal {T}^h)\), \(K\in \mathcal {T}^h\), and \((K,L)\in \Sigma ^h\), we have the identity (3.4), where \(\mathcal {J}^{h,\rho }\) is the Scharfetter–Gummel flux given in (1.2) and \(\overline{\mathcal {R}}_{\epsilon ,h}^*\) is the ‘cosh’ dual dissipation potential with edge conductivity \(\vartheta ^{\epsilon ,h,\rho }\) defined in (A.7).

In particular, the Scharfetter–Gummel scheme (\({{{\textbf {SGE}}}_h}\)) possesses the ‘cosh’ gradient flow structure with (1.6) as the driving energy.

Proof

We begin by rewriting the Scharfetter–Gummel flux in (1.2) using the density \({\bar{u}}^h = \text {d} \rho ^h / \text {d} \pi ^{\epsilon ,h,\rho }\) with the reference measure \(\pi ^{h,\rho }\) depending on \(\textsf {Q}^{h,\rho }\):

$$\begin{aligned} \mathcal {J}_{K|L}^{h,\rho } = \frac{\epsilon \tau _{K|L}^h}{Z^{h,\rho }} \left( \mathfrak {b}( q_{K|L}^h / \epsilon ) \,{\bar{u}}^h_K e^{-\textsf {Q}^{h,\rho }_K/ \epsilon } - \mathfrak {b}(- q_{K|L}^h / \epsilon )\, {\bar{u}}^h_L e^{-\textsf {Q}^{h,\rho }_L/ \epsilon } \right) . \end{aligned}$$
(A.9)

The expression (A.9) can be simplified, since

$$\begin{aligned} \mathfrak {b}(q_{K|L}^h / \epsilon )\exp (-\textsf {Q}^{h,\rho }_K / \epsilon ) = \frac{q_{K|L}^h \exp (-\textsf {Q}^{h,\rho }_K / \epsilon )}{\epsilon \left( \exp (q_{K|L}^h / \epsilon ) - 1 \right) } = \frac{ q_{K|L}^h}{\epsilon \big ({\exp (\textsf {Q}^{h,\rho }_L / \epsilon ) - \exp (\textsf {Q}^{h,\rho }_K / \epsilon ) }\big )} \end{aligned}$$

and, similarly,

$$\begin{aligned} \mathfrak {b}(-q_{K|L}^h / \epsilon ) \exp (-\textsf {Q}^{h,\rho }_L / \epsilon ) = \frac{ q_{K|L}^h}{\epsilon \big ({\exp (\textsf {Q}^{h,\rho }_L / \epsilon ) - \exp (\textsf {Q}^{h,\rho }_K / \epsilon ) }\big )}, \end{aligned}$$

therefore

$$\begin{aligned} \mathcal {J}_{K|L}^{h,\rho } = \frac{\tau _{K|L}^h}{Z^{h,\rho }} \frac{ q_{K|L}^h}{\exp (\textsf {Q}^{h,\rho }_L / \epsilon ) - \exp (\textsf {Q}^{h,\rho }_K / \epsilon )} \left( { {\bar{u}}^h_K - {\bar{u}}^h_L }\right) = \frac{\epsilon }{2}\left( { {\bar{u}}^h_K - {\bar{u}}^h_L }\right) \vartheta _{K|L}^{\epsilon ,h,\rho }. \end{aligned}$$

On the other hand, we note that for every \((K,L)\in \Sigma ^h\) and \(\xi ^h\in \mathcal {B}(\Sigma ^h)\):

$$\begin{aligned} D_2\overline{\mathcal {R}}^*_{\epsilon ,h}(\rho ^h,\xi ^h)(K,L) = \epsilon \sinh \left( {\frac{\xi ^h_{K|L}}{2\epsilon }}\right) \sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \,\vartheta ^{\epsilon ,h,\rho }_{K|L}. \end{aligned}$$

Recall from (A.1) and (A.3) that \(\overline{\nabla }\mathcal {E}'_{\epsilon ,h}(\rho ^h) = \epsilon \overline{\nabla }\log ({\bar{u}}^h)\). Inserting \(\xi ^h = - \overline{\nabla }\mathcal {E}'_{\epsilon ,h}(\rho ^h)\), we obtain

$$\begin{aligned} D_2 \overline{\mathcal {R}}_{\epsilon ,h}^* \big (\rho ^h, - \overline{\nabla }\mathcal {E}'_{\epsilon ,h}(\rho ^h)\bigr ) (K, L)&= \epsilon \sinh \bigg ({\frac{1}{2} \log \frac{{\bar{u}}^h_K}{{\bar{u}}^h_L}} \bigg )\sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \,\vartheta ^{\epsilon ,h,\rho }_{K|L} = \mathcal {J}_{K|L}^{h,\rho }, \end{aligned}$$

i.e. identity (3.4) holds as asserted. \(\square \)

Remark A.2

Since the classical Scharfetter–Gummel scheme has the ‘cosh’ gradient-flow formulation, one can ask if it is possible to use the framework of [24] to prove the convergence. The necessary assumptions on the invariant measure \(\pi ^{\epsilon ,h,\rho }\) and the jump intensities \(\kappa ^{\epsilon ,h,\rho }\) hold true based on the notion of local detailed balance as defined in (A.4). However, the zero-local-average assumption

$$\begin{aligned} \sum _{L\in \mathcal {T}^h_K} \vartheta ^{\epsilon ,h,\rho }_{K|L} (x_K - x_L) = 0\qquad \text {for all }K\in \mathcal {T}^h\text { with }\overline{K} \cap \partial \Omega = \emptyset \text { does not hold.}\nonumber \\ \end{aligned}$$
(A.10)

In addition, the nonlinear dependency of \(\vartheta ^{\epsilon ,h,\rho }\) on \(\rho \) seems to make satisfying (A.10), even only asymptotically, very hard and may require strong assumptions on the tessellations to work around.

As a last remark, we emphasize that the edge conductivity \(\vartheta ^{\epsilon ,h,\rho }\) defined in (A.7) depends non-uniformly on the diffusion parameter \(\epsilon >0\), which makes it difficult to pass to the limit \(\epsilon \rightarrow 0\).

1.2 The tilt-dependence of the \(\cosh \)-gradient structure

The disadvantages of the ‘cosh’ gradient structure mentioned earlier are due to tilt-dependence as defined in [35]. To clarify this further, we decompose the free energy into entropy and potential energies by writing

$$\begin{aligned} \mathcal {E}_{\epsilon ,h}(\rho ^h) = \epsilon \mathcal {S}_h(\rho ^h) + \mathcal {V}_h^V(\rho ^h) + \mathcal {W}_h^W(\rho ^h), \end{aligned}$$
(A.11)

where \(V^h:\mathcal {T}_h \rightarrow \mathbb {R}\) and \(W^h:\mathcal {T}_h\times \mathcal {T}_h\rightarrow \mathbb {R}\) symmetric are given and we set

$$\begin{aligned} & \mathcal {S}_h(\rho _h) :=\sum _{K\in \mathcal {T}^h} \phi (u^h_K )|K|, \qquad \text { where } \qquad u^h_K :=\frac{\rho ^h_K}{|K|}; \\ & \mathcal {V}_h^V(\rho ^h) :=\sum _{K\in \mathcal {T}^h} V^h_K \rho ^h_K \qquad \text {and}\qquad \mathcal {W}_h^W(\rho ^h) :=\frac{1}{2} \sum _{K, L\in \mathcal {T}^h\times \mathcal {T}^h} W^h_{KL} \rho ^h_K \rho ^h_L. \end{aligned}$$

Then, we can provide a gradient structure for the Scharfetter–Gummel scheme for all possible potential energies \(V^h\) and interaction energies \(W^h\) altogether by introducing the set of tilts

$$\begin{aligned} \mathcal {F}_h :=\Big \{ \mathcal {V}_h^V + \mathcal {W}_h^W \,\Big |\, V^h: \mathcal {T}^h \rightarrow \mathbb {R},\; W^h: \mathcal {T}^h\times \mathcal {T}^h \rightarrow \mathbb {R}\text { symmetric}\Big \}.\nonumber \\ \end{aligned}$$
(A.12)

We can then recast Lemma A.1 as a derivation of a gradient structure with tilting [35, Definition 1.16] of the type \((\mathcal {T}^h,\Sigma ^h,\overline{\nabla },\mathcal {S}_h,\overline{\mathcal {R}}_{\epsilon ,h},\mathcal {F}_h)\). By recalling that for \(\mathcal {V}_h^V + \mathcal {W}_h^W \in \mathcal {F}_h\), we find \(\textsf {Q}^{h,\rho } = (\mathcal {V}_h^V)'(\rho ^h) + (\mathcal {W}_h^W)'(\rho ^h)\) as defined in (A.2) and obtain from (A.3) the dissipation potential with tilting defined by

$$\begin{aligned} & \overline{\mathcal {R}}_{\epsilon ,h}\left( \rho ^h,j^h;\mathcal {V}_h^V + \mathcal {W}_h^W\right) :=\frac{1}{2}\sum _{(K,L)\in \Sigma ^h} \Psi _\epsilon \left( \frac{j_{K|L}^h}{\sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \vartheta _{K|L}^{\epsilon ,h,\rho }}\right) \sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \vartheta _{K|L}^{\epsilon ,h,\rho },\nonumber \\ & \qquad {\bar{u}}_K^h = \frac{\rho _K^h}{\pi ^{\epsilon ,h,\rho }}. \end{aligned}$$
(A.13)

In particular, it depends on the potential energies \(V^h,W^h\) through \(\vartheta ^{\epsilon ,h,\rho }\) defined in (A.7) and hence is tilt-dependent. Its undesirable properties explained in Remark A.2 are a direct consequence of the dependency of the gradient structure on the potentials and the diffusivity \(\epsilon >0\).

1.3 Detilting of the \(\cosh \)-gradient structure

In this section, we deduce the dual dissipation potential (1.7) from the one including the ‘\(\cosh \)’ in (A.3) by a de-tilting construction explained in [35, Remark 1.17]. In this way, we prove the following Lemma.

Lemma A.3

The Scharfetter–Gummel with flux-force relation (1.2) is induced by a gradient structure with tilting \((\mathcal {T}^h,\Sigma ^h,\overline{\nabla }, \mathcal {S}_h,\mathcal {R}_{\epsilon ,h},\mathcal {F}_h)\) with tilt set \(\mathcal {F}_h\) given in (A.12). Moreover, the dissipation potential \(\mathcal {R}_{\epsilon ,h}\) is tilt-independent and given by

$$\begin{aligned} \mathcal {R}_{\epsilon ,h}(\rho ^h, j^h) = 2\sum _{(K,L)\in \Sigma ^h} \tau _{K|L}^h \,\alpha _\epsilon \left( { u^h_K,u^h_L, \frac{j^h_{K|L}}{\tau _{K|L}^h}}\right) , \qquad u_K^h:=\frac{\rho _K^h}{|K|}, \end{aligned}$$
(A.14)

where \(\alpha _\epsilon \) is the Legendre dual of \(\alpha _\epsilon ^*\) given in (1.8) with respect to the third variable.

Proof

First, we make the tilt-dependence of the ‘\(\cosh \)’-dual dissipation potential \(\overline{\mathcal {R}}_h^*\) from (A.3) explicit, for which use the primal dissipation potential defined in (A.13) and can rewrite (A.3) as

$$\begin{aligned} \overline{\mathcal {R}}^*_{\epsilon ,h}(\rho ^h,\xi ^h; \mathcal {V}_h^V+\mathcal {W}_h^W) = \frac{1}{2} \sum _{(K,L)\in \Sigma ^h} \Psi ^*_\epsilon (\xi ^h_{K|L})\, \sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \vartheta _{K|L}^{\epsilon ,h,\rho },\qquad {\bar{u}}_K^h = \frac{\rho _K^h}{\pi _K^{\epsilon ,h,\rho }}. \end{aligned}$$

Note, that the tilt-dependence comes through \(\vartheta ^{\epsilon ,h,\rho }\) in terms of \(\textsf {Q}^{h,\rho }\) defined in (A.7) and  (A.2), respectively. Specifically, we fix \((K,L)\in \Sigma ^h\) and identify \(q_{K|L}^h = \overline{\nabla }\textsf {Q}^{h,\rho }\) in \(\vartheta ^{\epsilon ,h,\rho }_{K|L}\) from (A.7) to obtain

$$\begin{aligned} \sqrt{{\bar{u}}^h_K {\bar{u}}^h_L} \vartheta _{K|L}^{\epsilon ,h,\rho } = \tau _{K|L}^h \sqrt{u_K^h u_L^h} \frac{\overline{\nabla }\textsf {Q}^{h,\rho }_{K|L}}{\exp \big ({\overline{\nabla }\textsf {Q}^{h,\rho }_{K|L}/(2\epsilon )}\big )-\exp \big ({-\overline{\nabla }\textsf {Q}^{h,\rho }_{K|L}/(2\epsilon )}\big )} . \end{aligned}$$

In this way, we can write

$$\begin{aligned} \overline{\mathcal {R}}^*_{\epsilon ,h}\left( \rho ^h,\xi ^h; \mathcal {V}_h^V+\mathcal {W}_h^W\right) = \frac{1}{2} \sum _{(K,L)\in \Sigma ^h} \overline{\textsf {R}}^*_{\epsilon ,h}\left( K|L,\rho ^h_K,\rho ^h_L,\xi ^h_{K|L};\textsf {Q}^{h,\rho }_K - \textsf {Q}^{h,\rho }_L\right) , \end{aligned}$$

with

$$\begin{aligned} \overline{\textsf {R}}^*_{\epsilon ,h}\left( K|L;\rho ^h_K,\rho ^h_L;\xi ^h_{K|L};q_{K|L}^h\right) :=\Psi ^*_\epsilon (\xi ^h_{K|L})\, \tau _{K|L}^h \sqrt{ u_K^h u_L} \frac{q_{K|L}^h}{e^{q_{K|L}^h/(2\epsilon )}- e^{-q_{K|L}^h/(2\epsilon )}}.\nonumber \\ \end{aligned}$$
(A.15)

Following the construction from [35, Remark 1.17], we can make use of the fact that the solution is given for the specific force \(\xi _{K|L}^h=- \epsilon \overline{\nabla }\log \rho ^h(K,L)-q_{K|L}^h\), which is the negative discrete gradient of the discrete free energy from (A.11). With this, one can define an evolution-equivalent dissipation potential \(\tilde{\textsf {R}}^*_{\epsilon ,h}\) (cf. [35, Eqn. (1.64)]) by first differentiating the dual dissipation potential \(\overline{\textsf {R}}^*_{\epsilon ,h}\) in (A.15) w.r.t. the \(\xi \)-variable denoted with \(D_3\), then use the substitution for \(q_{K|L}^h\) along solutions of the scheme and finally integrate w.r.t. the \(\xi \)-variable again to obtain

$$\begin{aligned} \tilde{\textsf {R}}^*_{\epsilon ,h}(K|L;\rho ^h_K,\rho ^h_L;\Xi ^h_{K|L}):= & \int \limits _0^{\Xi ^h_{K|L}} D_3 \overline{\textsf {R}}^*_{\epsilon ,h}(K|L;\rho ^h_K,\rho ^h_L;\xi ^h_{K|L};-\xi _{K|L}^h\\ & - \epsilon \overline{\nabla }\log \rho ^h(K,L)) \text {d} \xi _{K|L}^h. \end{aligned}$$

Instead of calculating the integral, we check that \(\tilde{\textsf {R}}^*_{\epsilon ,h}\) agrees with \(D_2 \mathcal {R}_{\epsilon ,h}^*(\rho ^h,\xi ^h)\) from (1.7), which amounts to verifying the identity

$$\begin{aligned} D_2 \mathcal {R}_{\epsilon ,h}^*(\rho ^h,\xi ^h)(K,L) {\mathop {=}\limits ^{!}} D_2\overline{\mathcal {R}}_{\epsilon ,h}^*\left( {\rho ^h,\xi ^h; -\xi ^h-\epsilon \overline{\nabla }\mathcal {S}_h(\rho )}\right) (K,L). \end{aligned}$$
(A.16)

By substituting once more \(\overline{\nabla }\textsf {Q}^{h,\rho }_{K|L} = q_{K|L}^h = -\xi _{K|L}^h- \epsilon \overline{\nabla }\log \rho ^h(K,L)\), which amounts in using the identity (3.6), we observe that

$$\begin{aligned}&D_2\overline{\mathcal {R}}_{\epsilon ,h}^*\left( {\rho ^h,\xi ^h; - \xi ^h -\overline{\nabla }\mathcal {S}_h(\rho )}\right) (K,L)\\&\quad = \epsilon \tau _{K|L}^h \sinh \bigg ({\frac{\xi ^h_{K|L}}{2\epsilon }} \bigg )\sqrt{u_K^h u_L^h}\frac{\log \big ({u^h_K e^{-\xi ^h_{K|L} / 2\epsilon }}\big ) - \log \big ({u^h_L e^{-\xi ^h_{K|L} / 2\epsilon } }\big )}{e^{-\xi ^h_{K|L}/2\epsilon -\overline{\nabla }\log \sqrt{u^h}(K,L) }-e^{\xi _{K|L}/2\epsilon +\overline{\nabla }\log \sqrt{u^h}(K,L)}} \\&\quad = \alpha _\epsilon \left( {u^h_K,u^h_L, \xi ^h_{K|L}/2}\right) = D_2\mathcal {R}_{\epsilon ,h}^*(\rho ^h,\xi ^h)(K,L), \end{aligned}$$

which verifies the claimed identity (A.16). Therefore, the solution property is a consequence of (3.7) and the remaining statements about the tilt-independence in Lemma A.3 follow by construction as argued in [35, Remark 1.17]. \(\square \)

Properties of the tilted dual dissipation potential

The following lemma contains some properties and an integral representation of the harmonic-logarithm mean \(\Lambda _H\) introduced in (1.9).

Definition B.1

(Mean) A function \(M:\mathbb {R}_+ \times \mathbb {R}_+ \rightarrow \mathbb {R}_+\) is a mean if it is

  1. (1)

    positively one-homogeneous: \(M(\lambda s,\lambda t) = \lambda M(s,t)\) for all \(s,t\in \mathbb {R}_+\) and \(\lambda >0\);

  2. (2)

    bounded by \(\min \{s,t\}\le M(s,t)\le \max \{s,t\}\) for all \(s,t\in \mathbb {R}_+\);

  3. (3)

    jointly concave.

Lemma B.2

(Harmonic-logarithmic mean) The logarithmic mean \(\Lambda : \mathbb {R}_+ \times \mathbb {R}_+ \rightarrow \mathbb {R}_+\),

$$\begin{aligned} \Lambda (s,t) = \int \limits _0^1 s^\tau t^{1-\tau } \text {d} \tau = {\left\{ \begin{array}{ll} \frac{s-t}{\log s - \log t}, & s\ne t;\\ s, & s=t. \end{array}\right. } \end{aligned}$$

is a mean between the geometric and arithmetic mean

$$\begin{aligned} \sqrt{st } \le \Lambda (s,t) \le \frac{s+t}{2}, \end{aligned}$$

with derivatives bounded

$$\begin{aligned} \partial _1 \Lambda (s,t) = \partial _2\Lambda (t,s) \qquad \text {and}\qquad \partial _1 \Lambda (s,t) = \frac{\Lambda (s,t)(s-\Lambda (s,t))}{s(s-t)} \,. \end{aligned}$$

The harmonic-logarithmic mean \(\Lambda _H: \mathbb {R}_+ \times \mathbb {R}_+ \rightarrow \mathbb {R}_+\) defined by

$$\begin{aligned} \Lambda _H(s,t) = \frac{1}{\Lambda \left( {1/s, 1/t}\right) } = \frac{st}{\Lambda (s, t)} \end{aligned}$$

is a mean between the harmonic and geometric mean

$$\begin{aligned} \frac{2}{\frac{1}{s}+ \frac{1}{t}} \le \Lambda _H(s,t) \le \sqrt{st} \end{aligned}$$

with the integral representations

$$\begin{aligned} \Lambda _H(a,b) = \int \limits _0^1 \frac{\text {d} \tau }{\tau /s+ (1-\tau )/t} = \int \limits _0^\infty \frac{s\, t\text {d} \tau }{(\tau +s) (\tau +t)} \end{aligned}$$

and derivatives

$$\begin{aligned} \partial _1 \Lambda _H(s,t)=\partial _2 \Lambda _H(t,s) = \frac{t\left( \Lambda (s, t) - t \right) }{\Lambda (s, t)}. \end{aligned}$$

Proof

See, for instance [8] for many properties of the logarithmic mean, from which the analogous ones of the harmonic-logarithmic mean follow. \(\square \)

The tilt-independent dual dissipation potential \(\mathcal {R}_{\epsilon ,h}^*\) in (1.7) is given in terms of the function \(\alpha ^*_\epsilon \) defined in (1.8), which we recall here for convenience

$$\begin{aligned} \alpha _\epsilon ^*(a, b, \xi ) = \epsilon \int \limits _0^\xi \sinh \left( \frac{x}{\epsilon } \right) \Lambda _H (a e^{-x/\epsilon }, b e^{x/\epsilon }) \text {d} x= \epsilon ^2 \alpha _1 \left( a, b, \frac{\xi }{\epsilon } \right) . \end{aligned}$$

Below we prove useful properties of \(\alpha _\epsilon ^*\).

Lemma B.3

The function \(\alpha _\epsilon ^*:\mathbb {R}_+\times \mathbb {R}_+\times \mathbb {R}\rightarrow \mathbb {R}_+\) in (1.8) has the following useful properties:

  1. (a)

    \(\alpha _\epsilon ^* (a, b, \xi )\) is convex in \(\xi \) for fixed \(a,b>0\), with \(\min \{a,b\} \le \partial _{\xi }^2 \alpha _\epsilon ^* (a, b, \xi ) \le \max \{a,b\}\);

  2. (b)

    \(\alpha _\epsilon ^* (a, b, \xi )\) is positively one-homogeneous and jointly concave in (ab) for fixed \(\xi \);

  3. (c)

    \(\alpha _\epsilon ^*\) satisfies the following bound:

    $$\begin{aligned} \alpha _\epsilon ^* (a, b, \xi ) \le \epsilon ^2 \sqrt{ab} \bigg ( \cosh \bigg ( \bigg | \frac{\xi }{\epsilon } \bigg | \bigg ) - 1 \bigg )= \frac{1}{4}\sqrt{ab}\,\Psi ^*(2\xi ). \end{aligned}$$

    Moreover, the expansion for \(\vert {\xi }\vert \ll 1\) is given by

    $$\begin{aligned} \alpha _\epsilon ^*(a,b,\xi ) = \Lambda _H(a,b) \frac{\xi ^2}{2} + O\left( {\frac{\vert {\xi }\vert ^3}{\epsilon }}\right) ; \end{aligned}$$
  4. (d)

    It holds that

    $$\begin{aligned} \alpha _\epsilon ^*(a,b,\xi ) \rightarrow \frac{1}{2} \big ( a (\xi ^+)^2 + b (\xi ^-)^2 \big ) =:\alpha _0^*(a,b,\xi ) \qquad \text {as } \epsilon \rightarrow 0 \,, \end{aligned}$$

    where \(\xi ^\pm \) is the positive and negative part of \(\xi \), respectively. Moreover,

    $$\begin{aligned} | \alpha _\epsilon ^*(a,b,\xi ) - \alpha _0^* (a,b,\xi ) | = O(C_{a, b, \xi } \, \epsilon ), \end{aligned}$$

    where the constant \(C_{a, b, \xi } < \infty \) depends on \(a, b, \xi \).

  5. (e)

    The function \(\beta _\epsilon : \mathbb {R}_+\times \mathbb {R}_+\rightarrow \mathbb {R}_+\) defined for the argument \(\xi = - \epsilon \log \sqrt{b/a}\) in \(\alpha _\epsilon ^*\) has the representation

    $$\begin{aligned} \beta _\epsilon (a, b) :=\alpha _\epsilon ^* (a, b, -\epsilon \log \sqrt{b/a})&= \frac{\epsilon ^2}{4} \int \limits _a^b \frac{ab}{z} \left[ \frac{1}{\Lambda (z,a)} - \frac{1}{\Lambda (z,b)} \right] \text {d} z; \end{aligned}$$
  6. (f)

    The function \(\beta _\epsilon :\mathbb {R}_+\times \mathbb {R}_+\rightarrow \mathbb {R}_+\) defined in (e) is jointly convex, continuous with

    $$\begin{aligned} \beta _\epsilon (a, 0) :=\frac{\epsilon ^2}{4} \frac{\pi ^2}{6} a \quad \text {and, symmetrically, } \quad \beta _\epsilon (0, b) :=\frac{\epsilon ^2}{4} \frac{\pi ^2}{6} b, \end{aligned}$$

    and satisfies the following bounds:

    $$\begin{aligned} \frac{\epsilon ^2}{4} (\sqrt{a}-\sqrt{b})^2 \le \frac{\epsilon ^2}{4} \frac{\left( {a-b}\right) ^2}{a+b} \le \beta _\epsilon (a, b) \le \frac{\epsilon ^2}{2} (\sqrt{a}-\sqrt{b})^2; \end{aligned}$$

    Moreover, the function \(\mathbb {R}_+ \times \mathbb {R}_+ \ni (a, b) \mapsto \beta _\epsilon (a^2, b^2)\) is differentiable.

  7. (g)

    The function \(\alpha _\epsilon ^*\bigl (a,b,-\epsilon \log \sqrt{b/a} + q / 2 \bigr )\) has the expansion

    $$\begin{aligned} \alpha _\epsilon ^*\left( a,b,-\epsilon \log \sqrt{b/a} + q/2 \right)&= \beta _\epsilon (a, b) + \frac{\epsilon }{4}(a-b)\,q + \frac{q^2}{4} \mathbb {h}_\epsilon (a, b, q) \end{aligned}$$

    with

    $$\begin{aligned} \mathbb {h}_\epsilon (a, b, q) :=\int \limits _0^1 \Bigl [a\, \mathfrak {h}\left( \lambda q/\epsilon \right) + b\,\mathfrak {h}\left( -\lambda q/\epsilon \right) \Bigr ](1-\lambda )\text {d} \lambda ,\qquad \mathfrak {h}(s) = \frac{1}{4}\frac{e^s-1-s}{\sinh ^2(s/2)}. \end{aligned}$$

Proof

(a) From the representation of \(\alpha ^*_1\) in terms of the harmonic-logarithmic mean, it follows that

$$\begin{aligned} \partial _\xi \alpha ^*_1(a, b, \xi ) = \sinh (\xi ) \Lambda _H (ae^{-\xi }, b e^\xi ) = \sinh (\xi ) \frac{ab}{\Lambda (ae^{-\xi }, b e^\xi )}. \end{aligned}$$

It also holds

$$\begin{aligned} \partial _\xi ^2 \alpha ^*_1(a,b,\xi )= & \frac{a\, b}{\left( {a e^{-\xi } - b e^{\xi }}\right) ^2} \\ & \left( { a (e^{-2\xi }-1)+ b (e^{2\xi } -1) + (a-b)\left( { \log \frac{e^{-\xi }}{b} - \log \frac{e^{\xi }}{a}}\right) }\right) \,, \end{aligned}$$

which can be rewritten with the help of the function

$$\begin{aligned} g(x) = \frac{x \log x - x +1}{(x-1)^2} \end{aligned}$$

as

$$\begin{aligned} \partial _\xi ^2 \alpha ^*_1(a,b,\xi ) = a \, g\left( {\frac{a}{b}e^{-2\xi }}\right) + b \, g\left( { \frac{b}{a} e^{2\xi }}\right) \,. \end{aligned}$$

The convexity follows now by observing that

$$\begin{aligned} \forall x\in [0,1]: 0\le g(x) \le 1 \quad \text {and}\quad g(x) + g(x^{-1}) = 1 \end{aligned}$$

and hence the bound

$$\begin{aligned} \min \{a,b\} \le \partial _\xi ^2 \alpha ^*_1(a,b,\xi ) \le \max \{ a,b \} \,, \end{aligned}$$

implying the convexity in \(\xi \) for fixed \(a,b>0\).

(b) The positive one-homogeneity and joint concavity follow from the properties of \(\Lambda _H\).

(c) Let \(\xi >0\). Using the inequality between the harmonic-logarithmic and geometric mean, we obtain

$$\begin{aligned} \alpha _1 (a, b, \xi ) = \int \limits _0^\xi \sinh (x) \Lambda _H (a e^{-x}, b e^x) \text {d} x \le \int \limits _0^\xi \sinh (x) \sqrt{ab} \text {d} x = \sqrt{ab} \big ( \cosh (\xi ) - 1 \big ). \end{aligned}$$

If \(\xi < 0\), then

$$\begin{aligned} \alpha _1 (a, b, \xi ) = \int \limits _0^{|\xi |} \sinh (x) \Lambda _H(ae^x, be^{-x}) \text {d} x \le \sqrt{ab} \big ( \cosh (|\xi |) - 1 \big ). \end{aligned}$$

Combining the two cases and considering \(\alpha _\epsilon \), we get

$$\begin{aligned} \alpha _\epsilon (a, b, \xi ) \le \epsilon ^2 \sqrt{ab} \bigg ( \cosh \bigg ( \bigg | \frac{\xi }{\epsilon } \bigg | \bigg ) - 1 \bigg ). \end{aligned}$$

As for the asymptotic expansion, we obtain, by definition of \(\alpha ^*_1\),

$$\begin{aligned} \alpha ^*_1(a, b, \xi ) = \partial _\xi ^2 \alpha ^*_1(a, b, \xi ) |_{\xi =0} \frac{\xi ^2}{2} + O\left( |\xi |^3 \right) = \Lambda _H (a, b) \frac{\xi ^2}{2} + O\left( |\xi |^3 \right) . \end{aligned}$$

Then it follows directly that

$$\begin{aligned} \alpha ^*_\epsilon (a, b, \xi ) = \epsilon ^2 \alpha ^*_1 \left( a, b, \frac{\xi }{\epsilon } \right) = \Lambda _H (a, b) \frac{\xi ^2}{2} + O\left( \frac{|\xi |^3}{\epsilon } \right) . \end{aligned}$$

(d) We rewrite \(\alpha ^*_\epsilon \) as

$$\begin{aligned} \alpha ^*_\epsilon (a, b, \xi )&=\epsilon ^2 \int \limits _0^{\xi /\epsilon } \sinh (x) \Lambda _H (ae^{-x}, be^x) \text {d} x\\&= \frac{\epsilon ^2}{2} \int \limits _0^{\xi /\epsilon } \big ( \Lambda _H (a, be^{2x}) - \Lambda _H (ae^{-2x}, b) \big ) \text {d} x \\&= \frac{\epsilon }{2} \int \limits _0^\xi \big ( \Lambda _H (a, be^{2x/\epsilon }) - \Lambda _H (ae^{-2x/\epsilon }, b) \big )\text {d} x. \end{aligned}$$

For \(x > 0\), it holds that

$$\begin{aligned} \frac{\epsilon }{2} \Lambda _H (a, be^{2x/\epsilon }) = \frac{\epsilon }{2} \frac{ab e^{2x/\epsilon }}{a - be^{2x/\epsilon }} \Big ( \log \frac{a}{b} - \frac{2x}{\epsilon } \Big ) = \frac{ab}{a e^{-2x/\epsilon }- b} \Big ( \frac{\epsilon }{2} \log \frac{a}{b} - x\Big ) \xrightarrow {\epsilon \rightarrow 0} ax, \end{aligned}$$

and

$$\begin{aligned} - \frac{\epsilon }{2} \Lambda _H (ae^{-2x/\epsilon }, b) = - \frac{ab}{a - b e^{2x/\epsilon }} \Big ( \frac{\epsilon }{2} \log \frac{a}{b} - x\Big ) \xrightarrow {\epsilon \rightarrow 0} 0. \end{aligned}$$

For \(x < 0\), similarly, we obtain

$$\begin{aligned} \frac{\epsilon }{2} \Big ( \Lambda _H (a, be^{2x/\epsilon }) - \Lambda _H (ae^{-2x/\epsilon }, b) \Big ) \xrightarrow {\epsilon \rightarrow 0} bx. \end{aligned}$$

Combining the two cases yields

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \alpha ^*_\epsilon (a, b, \xi ) = \mathbbm {1}_{\xi > 0} \int \limits _0^\xi ax \text {d} x + \mathbbm {1}_{\xi < 0} \int \limits _0^\xi bx \text {d} x = \frac{1}{2} \big ( a (\xi ^+)^2 + b (\xi ^-)^2 \big ). \end{aligned}$$

(e) Direct calculation shows

$$\begin{aligned} \beta _\epsilon (a, b)&= \alpha ^*_\epsilon \left( a, b, -\epsilon \log \sqrt{\frac{b}{a}} \right) = \epsilon ^2 \alpha ^*_1 \left( a, b, \log \sqrt{\frac{a}{b}} \right) \\&= \epsilon ^2 \int \limits _0^{\log \sqrt{a/b}} \sinh (x) \Lambda _H(ae^{-x}, be^x) \text {d} x\\&= \frac{\epsilon ^2}{4} \int \limits _1^{a/b} \left( \sqrt{y} - \frac{1}{\sqrt{y}} \right) \frac{ab}{\Lambda \left( \frac{a}{\sqrt{y}}, b\sqrt{y} \right) } \frac{1}{y} \text {d} y \\&= \frac{\epsilon ^2}{4} \int \limits _1^{a/b} \frac{ab}{y} \left[ \frac{1}{\Lambda \left( a/y, b \right) } - \frac{1}{\Lambda \left( a, b y \right) } \right] \text {d} y \\&= \frac{\epsilon ^2}{4} \int \limits _a^b \frac{ab}{z} \left[ \frac{1}{\Lambda (z, a)} - \frac{1}{\Lambda (z, b)} \right] \text {d} y. \end{aligned}$$

(f) The joint convexity of \(\beta _\epsilon \) follows from (a) and (b). It is clear that \(\beta _\epsilon \) is continuously differentiable in \(\mathbb {R}_+ \times \mathbb {R}_+\) since it is defined as an integral of a bounded continuous function. However, on the boundary \(\{0\}\times [0, +\infty ) \cup [0, +\infty ) \times \{0\}\) some partial derivatives become \(-\infty \). In the case of \((a, b) \mapsto \beta _\epsilon (a^2, b^2)\), the directional derivatives are continuous and bounded:

$$\begin{aligned} 0 \ge \partial _1 \beta _1 (a^2, 1)&= - 2a \int \limits _{a^2}^1 \frac{\log z}{z (z - 1)} \text {d} z \ge - 2a \int \limits _{a^2}^1 \frac{1}{z \sqrt{z}} \text {d} z = 4a \frac{1}{\sqrt{z}}\Big |_{a^2}^1 \\&= 4a \left( 1 - \frac{1}{a} \right) = 4 (a - 1) > -\infty . \end{aligned}$$

As for the bounds, we begin with the upper bound. Using the inequality that the harmonic-logarithmic mean is less or equal to the geometric mean yields

$$\begin{aligned} \beta _\epsilon (a, b) \le \epsilon ^2 \sqrt{ab} \int \limits _0^{-\log \sqrt{b/a}} \sinh (x) \text {d} x&= \epsilon ^2 \sqrt{ab} \left( \cosh \left( -\log \sqrt{b/a} \right) - 1 \right) \\&= \frac{\epsilon ^2}{2}\left( \sqrt{a} - \sqrt{b} \right) ^2. \end{aligned}$$

Tight lower bound. Since \(\beta _1\) is positively one-homogeneous it is enough to prove that

$$\begin{aligned} \beta _1(a, 1) \ge \gamma (a) :=\frac{1}{4} \frac{(a-1)^2}{a+1} \qquad \forall a\ge 0. \end{aligned}$$

For \(a = 0\) the inequality holds, since \(\beta _1(0, 1) = \frac{1}{4} \frac{\pi ^2}{6} \ge \frac{1}{4} = \gamma (0)\). It is left to consider \(a > 0\).

We notice that \(\beta _1(1, 1) = 0 = \gamma (1)\). Now we aim to compare the derivatives \(\partial _a \beta _1(a,1) \) and \(\partial _a \gamma (a)\) for \(a\in (0,1)\) and \(a\in (1,\infty )\). The derivative of \(\gamma \) is

$$\begin{aligned} \partial _a \gamma (a) = \frac{1}{4} \frac{(a-1)(a+3)}{(a+1)^2} = \int \limits _1^a \frac{2}{(z+1)^3} \text {d} z \end{aligned}$$

We use the representation of \(\beta _1\) from (e) and apply the change of variables \(y = z/a\) in the first part of the integral

$$\begin{aligned} \partial _a \beta _1(a, 1)&= \frac{1}{4} \partial _a \left[ \int \limits _1^{1/a} \frac{1}{y \Lambda (y,1)} \text {d} y - a \int \limits _a^1 \frac{1}{z \Lambda (z,1)} \text {d} z \right] \\&= \frac{a}{\Lambda (1/a, 1)} \left( -\frac{1}{a^2} \right) - \int \limits _a^1 \frac{1}{z \Lambda (z,1)} \text {d} z + \frac{1}{\Lambda (a, 1)} \\&= \int \limits _1^a \frac{1}{z \Lambda (z,1)} \text {d} z = \int \limits _1^a \frac{\log z}{z (z - 1)} \text {d} z . \end{aligned}$$

Therefore,

$$\begin{aligned} \partial _a \left( \beta _1(a,1) - \gamma (a) \right) = \int \limits _1^a \left[ \frac{\log z}{z (z - 1)} - \frac{2}{(z+1)^3} \right] \text {d} z. \end{aligned}$$

We are left to show that the integrand is positive, and then the bound follows. For \(z>1\), the integrand is positive, if and only if

$$\begin{aligned} \log z \ge \frac{8z(z-1)}{(z+1)^3}, \end{aligned}$$

which can be shown again by comparing the derivatives

$$\begin{aligned} \frac{1}{z} - 8\frac{-z^2 + 4z -1}{(z+1)^4} = \frac{(z-1)^2 (z^2 + 14z + 1)}{z (z+1)^4}> 0 \qquad \forall z >1. \end{aligned}$$

Rough lower bound. This lower bound follows from the inequality between the geometric and arithmetic means

$$\begin{aligned} \frac{(a-b)^2}{a+b} = \left( \sqrt{a} - \sqrt{b} \right) ^2 \left( 1 + \frac{2\sqrt{ab}}{a +b} \right) \ge 2 \left( \sqrt{a} - \sqrt{b} \right) ^2. \end{aligned}$$

(g) We apply the second-order Taylor expansion for a function f:

$$\begin{aligned} f(y) = f(x) + f'(x)(y-x) + (y-x)^2\int \limits _0^1 f''((1-\lambda )x + \lambda y)(1-\lambda )\text {d} \lambda \end{aligned}$$

to expand the function \(\alpha ^*_\epsilon \), obtaining

$$\begin{aligned}&\alpha ^*_\epsilon \Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} + \frac{q}{2} \Big ) = \alpha ^*_\epsilon \Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} \Big ) + \frac{q}{2} \,\partial _\xi (\alpha ^*_\epsilon ) \Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} \Big ) \\&\qquad + \frac{q^2}{4} \int \limits _0^1 (\partial _\xi ^2\alpha ^*_\epsilon ) \Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} + \lambda \frac{q}{2} \Big )(1-\lambda )\text {d} \lambda . \end{aligned}$$

After some manipulation, we find that

$$\begin{aligned} (\partial _\xi \alpha ^*_\epsilon )\Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} \Big )&= \frac{\epsilon }{2}(a-b),\\ (\partial _\xi ^2\alpha ^*_\epsilon ) \Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} + \frac{q}{2} \Big )&= a\, \mathfrak {h} \Big (\frac{q}{\epsilon } \Big ) + b\,\mathfrak {h}\left( -\frac{q}{\epsilon }\right) , \end{aligned}$$

with

$$\begin{aligned} \mathfrak {h}(s) = \frac{1}{4}\frac{e^s-1-s}{\sinh ^2(s/2)}. \end{aligned}$$

Hence,

$$\begin{aligned} \alpha ^*_\epsilon \Big (a,b,-\epsilon \log \sqrt{\frac{b}{a}} + \frac{q}{2} \Big )&= \beta _\epsilon (a,b) + \frac{\epsilon }{4}(a-b)\,q \\&\quad + \frac{q^2}{4} \int \limits _0^1 \Bigl [a\, \mathfrak {h}\left( \lambda q/\epsilon \right) + b\,\mathfrak {h}\left( -\lambda q/\epsilon \right) \Bigr ](1-\lambda )\text {d} \lambda , \end{aligned}$$

therewith concluding the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hraivoronska, A., Schlichting, A. & Tse, O. Variational convergence of the Scharfetter–Gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit. Numer. Math. 156, 2221–2292 (2024). https://doi.org/10.1007/s00211-024-01445-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-024-01445-4

Mathematics Subject Classification