Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Pharmacological characterization of the LSD analog N-ethyl-N-cyclopropyl lysergamide (ECPLA)

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

A Correction to this article was published on 15 November 2018

This article has been updated

Abstract

Rationale

The lysergamide lysergic acid diethylamide (LSD) is a prototypical classical hallucinogen with remarkably high potency. LSD remains a popular recreational drug but is also becoming an important research tool for medical and neuroscience studies. Recently, several lysergamides that are close structural analogs of LSD have been sold as recreational drugs, which suggests that further studies are needed to explore the pharmacological properties of these compounds.

Objective

In this present investigation, another LSD congener, N-ethyl-N-cyclopropyl lysergamide (ECPLA), which to date has not been marketed as a recreational substance, was evaluated for its pharmacological features relative to those previously reported for LSD. The experiments focused on interactions with the 5-HT2A receptor, which is responsible for mediating the psychedelic effects of LSD and other hallucinogens.

Methods

Competitive binding assays were performed to measure the affinity of ECPLA for 27 monoamine receptors. The ability of ECPLA to activate human 5-HT2 receptor subtypes was assessed using calcium mobilization assays. Head twitch response (HTR) studies were conducted in C57BL/6J mice to determine whether ECPLA activates 5-HT2A receptors in vivo. Two other N-alkyl substituted lysergamides, N-methyl-N-isopropyl lysergamide (MIPLA) and N-methyl-N-propyl lysergamide (LAMPA), were also tested in the HTR paradigm for comparative purposes.

Results

ECPLA has high affinity for most serotonin receptors, α2-adrenoceptors, and D2-like dopamine receptors. Additionally, ECPLA was found to be a potent, highly efficacious 5-HT2A agonist for Gq-mediated calcium flux. Treatment with ECPLA induced head twitches in mice with a median effective dose (ED50) of 317.2 nmol/kg (IP), which is ~ 40% of the potency observed previously for LSD. LAMPA (ED50 = 358.3 nmol/kg) was virtually equipotent with ECPLA in the HTR paradigm whereas MIPLA (ED50 = 421.7 nmol/kg) was slightly less potent than ECPLA.

Conclusions

These findings demonstrate that the pharmacological properties of ECPLA, MIPLA, and LAMPA are reminiscent of LSD and other lysergamide hallucinogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 15 November 2018

    The author of this article wanted to change the Acknowledgments section to: These studies were supported by an award from NIDA (R01 DA041336), as well as by the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center. Receptor binding and functional data were generously

References

  • Abramson HA (1959) Lysergic acid diethylamide (LSD-25): XXIX. The response index as a measure of threshold activity of psychotropic drugs in man. J Psychol 48:65–78

    Article  CAS  Google Scholar 

  • Abramson HA, Rolo A (1967) Comparison of LSD with methysergide and psilocybin on test subjects. In: Abramson HA (ed) The use of LSD in psychotherapy and alcoholism. Bobbs-Merrill Company, Inc., Indianapolis, pp 53–57

    Google Scholar 

  • Anonymous (2018) Tripping well grounded: an experience with MIPLA (exp111958). Available online: https://erowid.org/experiences/exp.php?ID=111958 [Accessed: August 21, 2018]

  • Barrett FS, Preller KH, Herdener M, Janata P, Vollenweider FX (2017) Serotonin 2A receptor signaling underlies LSD-induced alteration of the neural response to dynamic changes in music. Cereb Cortex, in press. https://doi.org/10.1093/cercor/bhx257

  • Bennett JP, Jr., Snyder SH (1975) Stereospecific binding of D-lysergic acid diethylamide (LSD) to brain membranes: relationship to serotonin receptors. Brain Res 94: 523–544

  • Brandt SD, Kavanagh PV, Westphal F, Stratford A, Elliott SP, Hoang K, Wallach J, Halberstadt AL (2016) Return of the lysergamides. Part I: analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test Anal 8:891–902

    Article  CAS  PubMed  Google Scholar 

  • Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Colestock T, Burrow TE, Chapman SJ, Stratford A, Nichols DE, Halberstadt AL (2017a) Return of the lysergamides. Part II: analytical and behavioural characterization of N6 -allyl-6-norlysergic acid diethylamide (AL-LAD) and (2'S,4'S)-lysergic acid 2,4-dimethylazetidide (LSZ). Drug Test Anal 9:38–50

    Article  CAS  PubMed  Google Scholar 

  • Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Stratford A, Nichols DE, Halberstadt AL (2017b) Return of the lysergamides. Part III: analytical characterization of N(6) -ethyl-6-norlysergic acid diethylamide (ETH-LAD) and 1-propionyl ETH-LAD (1P-ETH-LAD). Drug Test Anal 9:1641–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J, Stratford A, Klein LM, McCorvy JD, Nichols DE, Halberstadt AL (2018) Return of the lysergamides. Part IV: analytical and pharmacological characterization of lysergic acid morpholide (LSM-775). Drug Test Anal 10:310–322

    Article  CAS  PubMed  Google Scholar 

  • Burris KD, Sanders-Bush E (1992) Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide. Mol Pharmacol 42:826–830

    CAS  PubMed  Google Scholar 

  • Canal CE, Morgan D (2012) Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 4:556–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carhart-Harris RL, Kaelen M, Bolstridge M, Williams TM, Williams LT, Underwood R, Feilding A, Nutt DJ (2016a) The paradoxical psychological effects of lysergic acid diethylamide (LSD). Psychol Med 46:1379–1390

    Article  CAS  PubMed  Google Scholar 

  • Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, Tagliazucchi E, Schenberg EE, Nest T, Orban C, Leech R, Williams LT, Williams TM, Bolstridge M, Sessa B, McGonigle J, Sereno MI, Nichols D, Hellyer PJ, Hobden P, Evans J, Singh KD, Wise RG, Curran HV, Feilding A, Nutt DJ (2016b) Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A 113:4853–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther 298:1260–1268

    CAS  PubMed  Google Scholar 

  • Corne SJ, Pickering RW (1967) A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11:65–78

    Article  CAS  PubMed  Google Scholar 

  • Dolder PC, Schmid Y, Haschke M, Rentsch KM, Liechti ME (2015) Pharmacokinetics and concentration-effect relationship of Oral LSD in humans. Int J Neuropsychopharmacol 19:pyv072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolder PC, Schmid Y, Muller F, Borgwardt S, Liechti ME (2016) LSD acutely impairs fear recognition and enhances emotional empathy and sociality. Neuropsychopharmacology 41:2638–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolder PC, Schmid Y, Steuer AE, Kraemer T, Rentsch KM, Hammann F, Liechti ME (2017) Pharmacokinetics and pharmacodynamics of lysergic acid diethylamide in healthy subjects. Clin Pharmacokinet 56:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser P, Holstein D, Michel Y, Doblin R, Yazar-Klosinski B, Passie T, Brenneisen R (2014) Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J Nerv Ment Dis 202:513–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasser P, Kirchner K, Passie T (2015) LSD-assisted psychotherapy for anxiety associated with a life-threatening disease: a qualitative study of acute and sustained subjective effects. J Psychopharmacol 29:57–68

    Article  CAS  PubMed  Google Scholar 

  • Gogerty JH, Dille JM (1957) Pharmacology of d-lysergic acid morpholide (LSM). J Pharmacol Exp Ther 120:340–348

    CAS  PubMed  Google Scholar 

  • Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Geyer MA (2013) Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement. Psychopharmacology 227:727–739

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Geyer MA (2014) Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology 77:200–207

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AJ, Nichols DE (1985) Synthesis and LSD-like discriminative stimulus properties in a series of N(6)-alkyl norlysergic acid N,N-diethylamide derivatives. J Med Chem 28:1252–1255

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Marona-Lewicka D, Pfaff RC, Nichols DE (1994) Drug discrimination and receptor binding studies of N-isopropyl lysergamide derivatives. Pharmacol Biochem Behav 47:667–673

    Article  CAS  PubMed  Google Scholar 

  • Isbell H, Miner EJ, Logan CR (1959) Relationships of psychotomimetic to anti-serotonin potencies of congeners of lysergic acid diethylamide (LSD-25). Psychopharmacologia 1:20–28

    Article  CAS  PubMed  Google Scholar 

  • Klein LM, Cozzi NV, Daley PF, Brandt SD, Halberstadt AL (2018) Receptor binding profiles and behavioral pharmacology of ring-substituted N,N-diallyltryptamine analogs. Neuropharmacology, in press. doi: https://doi.org/10.1016/j.neuropharm.2018.02.028

  • Kraehenmann R, Pokorny D, Vollenweider L, Preller KH, Pokorny T, Seifritz E, Vollenweider FX (2017) Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation. Psychopharmacology 234:2031–2046

    Article  CAS  PubMed  Google Scholar 

  • Leysen JE (1989) Use of 5-HT receptor agonists and antagonists for the characterization of their respective receptor sites. In: Boulton AA, Bakrer GB, Juorio AV (eds) Drugs as tools in neurotransmitter research (Neuromethods 12). Humana Press, Clifton, NJ, pp 299–350

    Chapter  Google Scholar 

  • Marona-Lewicka D, Nichols DE (1995) Complex stimulus properties of LSD: a drug discrimination study with alpha 2-adrenoceptor agonists and antagonists. Psychopharmacology 120:384–391

    Article  CAS  PubMed  Google Scholar 

  • Monte AP, Marona-Lewicka D, Kanthasamy A, Sanders-Bush E, Nichols DE (1995) Stereoselective LSD-like activity in a series of d-lysergic acid amides of (R)- and (S)-2-aminoalkanes. J Med Chem 38:958–966

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Lenz C, Dolder P, Lang U, Schmidt A, Liechti M, Borgwardt S (2017a) Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr Scand 136:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller F, Lenz C, Dolder PC, Harder S, Schmid Y, Lang UE, Liechti ME, Borgwardt S (2017b) Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Transl Psychiatry 7:e1084

    Article  CAS  Google Scholar 

  • Murphree HB, de Maar EWJ, Williams HL, Bryan LL (1958) Effects of lysergic acid derivatives on man: antagonism between d-lysergic acid diethylamide and its 2-brom congener. J Pharmacol Exp Ther 122:55A–56A

  • Nichols DE (2018) Chemistry and structure-activity relationships of psychedelics. Curr Top Behav Neurosci 36:1–43

  • Nichols DE, Monte A, Huang X, Marona-Lewicka D (1996) Stereoselective pharmacological effects of lysergic acid amides possessing chirality in the amide substituent. Behav Brain Res 73:117–119

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM (2002) Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N,N-diethyllysergamide (LSD). J Med Chem 45:4344–4349

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, Fiedler WJ (2015) N-Benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem Neurosci 6:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Oberlender R, Pfaff RC, Johnson MP, Huang XM, Nichols DE (1992) Stereoselective LSD-like activity in d-lysergic acid amides of (R)- and (S)-2-aminobutane. J Med Chem 35:203–211

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ (1994) 5-Hydroxytryptamine receptor interactions of D-lysergic acid diethylamide. In: Pletscher A, Ladewig D (eds) 50 years of LSD current status and perspectives of hallucinogens. Parthenon Press, New York, pp 19–26

    Google Scholar 

  • Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stampfli P, Liechti ME, Seifritz E, Vollenweider FX (2017) The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol 27:451–457

    Article  CAS  PubMed  Google Scholar 

  • Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME (2015) Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99:546–553

    Article  CAS  PubMed  Google Scholar 

  • Roth BL (2013) National Institute of Mental Health psychoactive drug screening program (NIMH PDSP) assay protocol book, version II. Available online: https://pdspdb.unc.edu/pdspWeb/content/PDSP%20Protocols%20II%202013-03-28.pdf [Accessed: 06 May 2017]

  • Rothlin E (1957) Pharmacology of lysergic acid and some related compounds. J Pharm Pharmacol 9:569–587

    Article  CAS  PubMed  Google Scholar 

  • Schmid Y, Liechti ME (2017) Long-lasting subjective effects of LSD in normal subjects. Psychopharmacology 235:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, Brenneisen R, Muller F, Borgwardt S, Liechti ME (2015) Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry 78:544–553

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Muller F, Lenz C, Dolder PC, Schmid Y, Zanchi D, Lang UE, Liechti ME, Borgwardt S (2018) Acute LSD effects on response inhibition neural networks. Psychol Med 48:1464–1473

  • Shulgin AT (2016) Pharmacology notebook 9. Available online: https://www.erowid.org/library/books_online/shulgin_labbooks/shulgin_pharmacology_notebook9_searchable.pdf [Accessed: January 20, 2018]

  • Shulgin A, Shulgin A (1997) TIHKAL: the continuation. Transform Press, Berkeley

    Google Scholar 

  • Tagliazucchi E, Roseman L, Kaelen M, Orban C, Muthukumaraswamy SD, Murphy K, Laufs H, Leech R, McGonigle J, Crossley N, Bullmore E, Williams T, Bolstridge M, Feilding A, Nutt DJ, Carhart-Harris R (2016) Increased global functional connectivity correlates with LSD-induced ego dissolution. Curr Biol 26:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Valle M, Maqueda AE, Rabella M, Rodriguez-Pujadas A, Antonijoan RM, Romero S, Alonso JF, Mananas MA, Barker S, Friedlander P, Feilding A, Riba J (2016) Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol 26:1161–1175

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9:3897–3902

    Article  CAS  PubMed  Google Scholar 

  • Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, Lansu K, Schools ZL, Che T, Nichols DE, Shoichet BK, Dror RO, Roth BL (2017) Crystal structure of an LSD-bound human serotonin receptor. Cell 168:377–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts VJ, Lawler CP, Fox DR, Neve KA, Nichols DE, Mailman RB (1995) LSD and structural analogs: pharmacological evaluation at D1 dopamine receptors. Psychopharmacology 118:401–409

    Article  CAS  PubMed  Google Scholar 

  • Zhao YH, Abraham MH, Zissimos AM (2003) Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. J Org Chem 68:7368–7373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by an award from NIDA (R01 DA041336), as well as by the Veteran’s Administration VISN 22 Mental Illness Research, Education, and Clinical Center. Receptor binding data were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program (NIMH PDSP), Contract No. HHSN-271-2008-00025-C. The NIMH PDSP is directed by Dr. Bryan Roth at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda, MD, USA.

Funding

This study was funded by NIDA (R01 DA041336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Halberstadt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halberstadt, A.L., Klein, L.M., Chatha, M. et al. Pharmacological characterization of the LSD analog N-ethyl-N-cyclopropyl lysergamide (ECPLA). Psychopharmacology 236, 799–808 (2019). https://doi.org/10.1007/s00213-018-5055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5055-9

Keywords