Abstract
Rationale and objectives
Stress-induced alterations in oxidative and inflammatory parameters have been implicated in the pathophysiology of mood disorders. Based on the antioxidant and anti-inflammatory properties of the selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI), we assessed its ability to reverse depression-like behavioral alterations, neuroinflammation, and oxidative imbalance induced by acute restraint stress.
Methods
Mice submitted to restraint for 240 min received CMI (1 or 10 mg/kg, orally) 10 min after the end of the stress induction. Behavioral and biochemical tests were carried out after further 30 min.
Results
Restraint-induced depression-like behavior in the tail suspension test (TST), splash test, and new object exploration test was reversed by CMI. None of the treatments evoked locomotor alteration. In addition, CMI abrogated restraint-induced increases in plasma levels of corticosterone and in markers of oxidative stress and impaired superoxide dismutase and catalase activity in the prefrontal cortex (PFC) and hippocampus (HC). CMI also blocked stress-induced downregulation of mRNA levels of glucocorticoid receptor and brain-derived neurotrophic factor and upregulation of nuclear factor kappa B, inducible nitric oxide synthase, tumor necrosis alpha, indoelamine-2,3-dioxygenase, and glycogen synthase kinase 3 beta in PFC and HC.
Conclusions
These preclinical results indicate that administration of selenium-containing compounds might help to treat depression associated with inflammation and oxidative stress.
Similar content being viewed by others
References
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Ai H, Shi XF, Hu XP, Fang WQ, Zhang B, Lu W (2017) Acute stress regulates phosphorylation of N-methyl-d-aspartate receptor GluN2B at S1284 in hippocampus. Neuroscience 351:24–35. https://doi.org/10.1016/j.neuroscience.2017.03.029
Birmann PT, Sousa FSS, de Oliveira DH, Domingues M, Vieira BM, Lenardão EJ, Savegnago L (2018) 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole, a new selenium compound elicits an antinociceptive and anti-inflammatory effect in mice. Eur J Pharmacol 827:71–79. https://doi.org/10.1016/j.ejphar.2018.03.005
Brigelius-Flohé R, Flohé L (2017) Selenium and redox signaling. Arch Biochem Biophys 617:48–59. https://doi.org/10.1016/j.abb.2016.08.003
Browne CA, Lucki I (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161. https://doi.org/10.3389/fphar.2013.00161
Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev 33:1089–1098. https://doi.org/10.1016/j.neubiorev.2009.05.004
Casaril AM, Domingues M, Fronza MG, Vieira B, Begnini K, Lenardão EJ, Seixas FK, Collares T, Nogueica C, Savegnago L (2017a) Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice. J Psychoneuropharmacol
Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago L, Davies MJ (2017b) Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med 113:395–405. https://doi.org/10.1016/j.freeradbiomed.2017.10.344
Casaril AM, Martinez DM, Ricordi VG, Alves D, Lenardão EJ, Schultze E, Collares T, Seixas FK, Savegnago (2015) Evaluation of the toxicity of α-(phenylselanyl) acetophenone in mice. Regul Toxicol Pharmacol 73:868–874. doi: https://doi.org/10.1016/j.yrtph.2015.10.004
Chen H-JC, Spiers JG, Sernia C, Lavidis NA (2016) Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic Biol Med 90:219–229. https://doi.org/10.1016/j.freeradbiomed.2015.11.023
Dantzer R, O’Connor JC, Freund GG, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56. https://doi.org/10.1038/nrn2297
Dobarro M, Orejana L, Aguirre N, Ramírez MJ (2013) Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. Int J Neuropsychopharmacol 16:1351–1360. https://doi.org/10.1017/S1461145712001393
Domingues M, Casaril AM, Birmann PT, de Lourenço DA, Vieira BM, Begnini K, Seixas FK, Collares T, Lenardão EJ, Savegnago L (2018) Selanylimidazopyridine prevents lipopolysaccharide-induced depressive-like behavior in mice by targeting neurotrophins and inflammatory/oxidative mediators. Front Neurosci 12:486. https://doi.org/10.3389/fnins.2018.00486
Elenkov IJ (2008) Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochem Int 52:40–51. https://doi.org/10.1016/j.neuint.2007.06.037
Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229. https://doi.org/10.1016/j.neuroscience.2013.04.060
Felger JC, Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology 42:216–241. https://doi.org/10.1038/npp.2016.143
Freitas AE, Bettio LEB, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014) Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 50:143–150. https://doi.org/10.1016/j.pnpbp.2013.12.012
Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de SLF, Dalfre AL, Leal RB, Rodrigues AL (2013) Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 237:176–184. https://doi.org/10.1016/j.bbr.2012.09.035
Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J (2016) Psychosocial stress inhibits additional stress-induced hyperexpression of NO synthases and IL-1β in brain structures. Pharmacol Reports 68:1178–1196. https://doi.org/10.1016/J.PHAREP.2016.09.003
Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 127:80–97. https://doi.org/10.1016/j.freeradbiomed.2018.05.001
Gárate I, García-Bueno B, Madrigal JL, Caso JR, Alou L, Gómez-Lus ML, Leza JC (2014) Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J Neuroinflammation 11:8. https://doi.org/10.1186/1742-2094-11-8
Gárate I, Garcia-Bueno B, Madrigal JLM, Caso JR, Alou L, Gomez-Lus ML, Micó JA, Leza JC (2013) Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry 73:32–43. https://doi.org/10.1016/j.biopsych.2012.07.005
García-Bueno B, Caso JR, Leza JC (2008) Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 32:1136–1151. https://doi.org/10.1016/j.neubiorev.2008.04.001
Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78:1219–1232
Halliwell B (2007) Biochemistry of oxidative stress: Figure 1. Biochem Soc Trans 35:1147–1150. doi: https://doi.org/10.1042/BST0351147
Jevtić G, Nikolić T, Mirčić A, Stojković T, Velimirović M, Trajković V, Marković I, Trbovich AM, Radonjić NV, Petronijević N (2016) Mitochondrial impairment, apoptosis and autophagy in a rat brain as immediate and long-term effects of perinatal phencyclidine treatment — influence of restraint stress. Progr Neuro-Psychopharmacol Biol Psychiatry. 66:87–96
Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: how does it work? Trends Cogn Sci 10:152–158. https://doi.org/10.1016/j.tics.2006.02.002
Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E (2017) Stressed and inflamed, can GSK3 be blamed? Trends Biochem Sci 42:180–192. https://doi.org/10.1016/j.tibs.2016.10.009
Justice NJ, Huang L, Tian JB, Cole A, Pruski M, Hunt AJ Jr, Flores R, Zhu MX, Arenkiel BR, Zheng H (2015) Posttraumatic stress disorder-like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci 35:2612–1623. https://doi.org/10.1523/jneurosci.3333-14.2015
Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ, Lynch ED, Le Prell CG (2017) Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 390:969–979. https://doi.org/10.1016/S0140-6736(17)31791-9
Kotan VO, Sarandol E, Kirhan E, Ozkaya G, Kirli S (2011) Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1284–1290. https://doi.org/10.1016/j.pnpbp.2011.03.021
Ledo JH, Azevedo EP, Beckman D, Ribeiro FC, Santos LE, Razolli DS, Kincheski GC, Melo HM, Bellio M, Teixeira AL, Velloso LZ, Foguel D, De Felice FG, Ferreira ST (2016) Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer’s amyloid-β oligomers in mice. J Neurosci 36:12106–12116. https://doi.org/10.1523/JNEUROSCI.1269-16.2016
Lima-Junior DS, Costa DL, Carregaro V, Cunha LD, Silva ALN, Mineo TWP, Gutierrez FR, Bellio M, Bortoluci KR, Flavell RA, Bozza MT, Silva JS, Zamboni DS (2013) Inflammasome-derived IL-1β production induces nitric oxide–mediated resistance to Leishmania. Nat Med 19:909–915. https://doi.org/10.1038/nm.3221
Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin JP, Mankhetkorn S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 72:323–331. https://doi.org/10.1016/J.RADPHYSCHEM.2004.06.011
Lowes DA, Almawash AM, Webster NR, Reid VL, Galley HF (2011) Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Br J Anesthesia 107:193–201. https://doi.org/10.1093/bja/aer149
Lowry OH, Rosebrough NJ, Farr AL, RandalL RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
Lukic I, Mitic M, Djordjevic J, Tatalovic N, Bozovic N, Soldalovic I, Mihaljevic M, Pavlovic Z, Radojcic MB, Maric NP, Adzic M (2014) Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients. Neuropsychobiology 70:1–9. https://doi.org/10.1159/000362841
MacDowell K, Caso J, Martín-Hernández D, Madrigal JL, Leza JC, García-Bueno B (2015) Paliperidone prevents brain Toll-like receptor 4 pathway activation and neuroinflammation in rat models of acute and chronic restraint stress. Int J Neuropsychopharmacol 18. https://doi.org/10.1093/ijnp/pyu070
Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004
Martinez DM, Barcellos A, Casaril AM, Savegnago L, Lenardão EJ (2014) Antidepressant-like activity of dehydrozingerone: involvement of the serotonergic and noradrenergic systems. Pharmacol Biochem Behav 127:111–117. https://doi.org/10.1016/j.pbb.2014.10.010
Masaki C, Sharpley AL, Cooper CM, Godlewska BR, Singh N, Vasudevan SR, Harmer CJ, Churchill CG, Sharp T, Rogers RS, Cowen PJ (2016) Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology 233:2655–2661. https://doi.org/10.1007/s00213-016-4319-5
Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175
Moretti M, Budni J, dos Santos DB, Antunes A, Daufenbach JF, Manosso LM, Farina M, Rodrigues AL (2013) Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci 49:68–79. https://doi.org/10.1007/s12031-012-9892-4
Morgese MG, Tucci P, COlaianna M, Zotti M, Cuomo V, Schiavone S, Trabace L (2014) Modulatory activity of soluble beta amyloid on HPA axis function in rats. Curss Pharm Des 20:2539–2546. https://doi.org/10.2174/13816128113199990500
Morgese MG, Schiavone S, Trabace L (2017) Emerging role of amyloid beta in stress response: implication for depression and diabetes. E J Pharmacol 817:22–29. https://doi.org/10.1016/j.ejphar.2017.08.031
Niki E (2012) Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett 586:3767–3770. https://doi.org/10.1016/j.febslet.2012.09.025
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358
Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87–93. https://doi.org/10.4103/0976-500X.72350
Pesarico AP, Stangherlin EC, Mantovani AC, Zeni G, Nogueira CW (2015) 7-Fluoro-1,3-diphenylisoquinoline-1-amine abolishes depressive-like behavior and prefrontal cortical oxidative damage induced by acute restraint stress in mice. Physiol Behav 149:294–302. https://doi.org/10.1016/j.physbeh.2015.06.018
Pinto Brod LM, Fronza MG, Vargas JP, Ludtke DS, Luchese C, Wilhelm EA, Savegnago L (2016) Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 65:201–207. https://doi.org/10.1016/j.pnpbp.2015.10.008
Rana AK, Singh D (2018) Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 139:124–136. https://doi.org/10.1016/J.NEUROPHARM.2018.07.006
Rettori V, Fernandez-Solari J, Mohn C, Zubilete MAZ, De La Cal C, Prestifilippo JP, De Laurentiis A (2009) Nitric oxide at the crossroad of immunoneuroendocrine interactions. Ann N Y Acad Sci 1153:35–47. https://doi.org/10.1111/j.1749-6632.2008.03968.x
Rosa JM, Pazini FL, Cunha MP, Colla ARS, Manosso LM, Mancini G, Souza ACG, de Bem AF, Prediger RS, Rodrigues ALS (2018) Antidepressant effects of creatine on amyloid β 1–40-treated mice: the role of GSK-3β/Nrf 2 pathway. Prog Neuro-Psychopharmacol Biol Psychiatry doi: https://doi.org/10.1016/j.pnpbp.2018.05.001, 86, 270, 278
Schiavone S, Sorce S, Dubois-Dauphin M, Jaquet V, Colaianna M, Zotti M, Cuomo V, Trabace L, Krause K-H (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66:384–392. https://doi.org/10.1016/j.biopsych.2009.04.033
Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10. https://doi.org/10.1124/jpet.102.034439
Selek S, Savas HA, Gergerlioglu HS, Bulvul F, Uz E, Yumru M (2008) The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 107:89–94. https://doi.org/10.1016/j.jad.2007.08.006
Singh N, Sharpley AL, Emir UE, Masaki C, Herzallah MM, Gluck MA, Sharp T, Harmer CJ, Vasudeven SR, Cowen PJ, Churchill GC (2016) Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep and emotional processing in humans. Neuropsychopharmacology 41:1768–1778. https://doi.org/10.1038/npp.2015.343
Spiers JG, Chen H-JC, Cuffe JSM, Sernia C, Lavidis NA (2016) Acute restraint stress induces rapid changes in central redox status and protective antioxidant genes in rats. Psychoneuroendocrinology 67:104–112. https://doi.org/10.1016/j.psyneuen.2016.02.005
Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gylyaeva N (2014) Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. Biomed Res Int 2014:1–20. https://doi.org/10.1155/2014/932757
Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370
Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73:114–126. https://doi.org/10.1097/PSY.0b013e31820ad12b
Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017. https://doi.org/10.1038/sj.npp.1300532
Sudati JH, Nogara PA, Saraiva RA, Wagner C, Alberto EE, Braga AL, Fachinetto R, Piquini PC, Rocha JBT (2018) Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR: in vitro and in silico studies. Org Biomol Chem 16:3777–3787. https://doi.org/10.1039/c8ob00451j
Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert T, Thompson CL, Hawrylycz M, Dang C (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acid Res 41:D996–D1008. https://doi.org/10.1093/nar/gks1042
Surkin PN, Gallino SL, Luce V, Correa F, Solari JF, Laurentiis A (2018) Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology 87:131–140. https://doi.org/10.1016/j.psyneuen.2017.10.015
Thakare VN, Dhakane VD, Patel BM (2016) Potential antidepressant-like activity of silymarin in the acute restraint stress in mice: modulation of corticosterone and oxidative stress response in cerebral cortex and hippocampus. Pharmacol Reports 68:1020–1027. https://doi.org/10.1016/j.pharep.2016.06.002
Tsai M-C, Huang T-L (2016) Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder. Psychiatry Res 235:38–42. https://doi.org/10.1016/j.psychres.2015.12.005
Vieira BM, Thurow S, Brito JS, Perin G, Alves D, Jacob R, Santi C, Lenardão EJ (2015) Sonochemistry: an efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason Sonochem 27:192–199. https://doi.org/10.1016/J.ULTSONCH.2015.05.012
Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504
You JM, Yun SJ, Nam KN, Kang C, Won R, Lee EH (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87:440–447. https://doi.org/10.1139/y09-027
Zenker N, Bernstein DE (1958) The estimation of small amounts of corticosterone in rat plasma. J Biol Chem 231:695–701
Acknowledgements
The authors are grateful to UFPel and especially to the Biotechnology Graduate Program (UFPel) for providing support to carry out this work. CNPq is also acknowledged for the fellowship to LS, EL, FS, TC, and CWN.
Contributions
AMC and MD performed the experiments and the analysis of data and wrote the manuscript. SRB, DAL, and MS performed the experiments. AMC, MD, and LS designed the project. NBP and EJL synthesized the compound CMI. TC, FKS, LS, and CWN supervised the experiments. RD revised the scientific content of the manuscript and provided valuable intellectual insights. All authors critically reviewed the content and approved the final version for publication.
Role of funding source
This study received financial support and scholarships from the Brazilian agencies CNPq, CAPES, and FAPERGS (PRONEM 16/2551-0000240-1, PqG 17/2551-00011046-9, and FAPERGS/CAPES 04/2018 - DOCFIX 18/2551-0000511-8).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The studies were performed in accordance with protocols approved by the Committee on the Care and Use of Experimental Animal Resources at the Federal University of Pelotas, Brazil (4034-2017).
Conflict of interest
The authors declare they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to a Special Issue on Neuroimmune Signaling in Psychiatric Disease
Rights and permissions
About this article
Cite this article
Casaril, A.M., Domingues, M., Bampi, S.R. et al. The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology 236, 2867–2880 (2019). https://doi.org/10.1007/s00213-018-5151-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-018-5151-x