Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A novel experimental workflow to determine the impact of storage parameters on the mass spectrometric profiling and assessment of representative phosphatidylethanolamine lipids in mouse tissues

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Evaluation of signaling lipids is essential for measuring biological processes. There is a lack of experimental data regarding the proper storage of extracts for signaling lipid analysis, potentially impacting the procedures that can lead to accurate and reproducible evaluation. In this study, the importance of pre-analytical conditions for analyzing ion transitions for phosphatidylethanolamines (PEs), an abundant signaling phospholipid, was systematically assessed. A novel workflow was utilized involving an MRM-based experimental approach followed by statistical analysis. Specifically, lipids were extracted from the brain, heart, lungs, and serum of C57BL/6 mice. Extract subsets were resuspended in organic solvents prior to storage in various temperature conditions. Mass spectrometry analysis by multiple reaction monitoring (MRM) profiling was performed at four time points (1 day, 2 weeks, 2 months, or 6 months) to measure relative amounts of PEs in distinct lipid extract aliquots. We introduce an innovative statistical workflow to measure the changes in relative amounts of PEs in the profiles over time to determine lipid extract storage conditions in which fewer profile changes occur. Results demonstrated that time is the most significant factor affecting the changes in lipid samples, with temperature and solvent having comparatively minor effects. We conclude that for lipid extracts obtained by Bligh & Dyer extraction, storage at − 80.0 °C without solvent for less than 2 weeks before analysis is ideal. By considering the data generated by this study, lipid extract storage practices may be optimized and standardized, enhancing the validity and reproducibility of lipid assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data is described within the manuscript. Raw data is available upon request by contacting Drs. Rajwa (brajwa@purdue.edu) or Shannahan (jshannah@purdue.edu).

References

  1. Brasaemle DL. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48(12):2547–59. https://doi.org/10.1194/jlr.R700014-JLR200.

    Article  CAS  PubMed  Google Scholar 

  2. Cullis PR, Kruijff DE. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979;559(4):399–420.

    Article  CAS  Google Scholar 

  3. Emoto K, Toyama-sorimachi N, Karasuyama H, Inoue K, Umeda M. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res. 1997;434(232):430–4.

    Article  Google Scholar 

  4. Krause MR, Regen SL. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts. Acc Chem Res. 2014;47(12):3512–21. https://doi.org/10.1021/ar500260t.

    Article  CAS  PubMed  Google Scholar 

  5. Leonarduzzi G, Arkan MC, Basaga H, Chiarpotto E, Sevanian A, Poli G. Lipid oxidation products in cell signaling. Free Radic Biol Med. 2000;28(9):1370–8.

    Article  CAS  Google Scholar 

  6. Rockenfeller P, Koska M, Pietrocola F, Minois N, Knittelfelder O, Sica V, et al. Phosphatidylethanolamine positively regulates autophagy and longevity. Cell Death Differ. 2015;22:499–508. https://doi.org/10.1038/cdd.2014.219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Serhan CN, Chiang N, Dyke TEV. Resolving inflammation: dual lipid mediators. Nat Rev Immunol. 2008;8(5):349–61. https://doi.org/10.1038/nri2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37. https://doi.org/10.1084/jem.20020760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7. https://doi.org/10.1038/ni1276.

    Article  CAS  PubMed  Google Scholar 

  10. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev. 2005;45(5):559–79. https://doi.org/10.1051/rnd.

    Article  CAS  PubMed  Google Scholar 

  11. Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta. 2017;1862(10):1260–72. https://doi.org/10.1016/j.bbalip.2017.07.006.Lipid.

    Article  CAS  PubMed Central  Google Scholar 

  12. Yao Y, Huang C, Li Z-f, Wang A-y, Liu L-y, Zhao X-g, et al. Exogenous phosphatidylethanolamine induces apoptosis of human hepatoma HepG2 cells via the bcl-2/bax pathway. World J Gastroenterol. 2009;15(14):1751–8. https://doi.org/10.3748/wjg.15.1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease. Int Rev Cell Mol Biol. 2016;321:29–88. https://doi.org/10.1016/bs.ircmb.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  14. Cordella CBY. PCA: the basic building block of chemometrics. Anal Chem. 2012.

  15. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis--a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23. https://doi.org/10.1016/j.aca.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  16. Moore JD, Caufield WV, Shaw WA. Quantitation and standardization of lipid internal standards for mass spectroscopy. Lipidomics and bioactive lipids: mass-spectrometry–based lipid analysis. Meth. Enzymol., 2007. p. 351–67

  17. Christie WW, Han X. Lipid extraction, storage and sample handling. Lipid Analysis. 2012. p. 55–66

  18. Aitchison J. Principal component analysis of compositional data. Biometrika. 1983;70(1):57–65.

    Article  Google Scholar 

  19. Hron K, Filzmoser P, Thompson K. Linear regression with compositional explanatory variables. J Appl Stat. 2012;39(5):1115–28. https://doi.org/10.1080/02664763.2011.644268.

    Article  Google Scholar 

  20. Scealy JL, Caritat P, Grunsky EC, Tsagris MT, Welsh AH. Robust principal component analysis for power transformed compositional data. J Am Stat Assoc. 2015;110(509):136–48. https://doi.org/10.1080/01621459.2014.990563.

    Article  CAS  Google Scholar 

  21. Wang H, Shangguan L, Wu J, Guan R. Multiple linear regression modeling for compositional data. Neurocomputing. 2013;122:490–500. https://doi.org/10.1016/j.neucom.2013.05.025.

    Article  Google Scholar 

  22. Rudy MD, Kainz MJ, Graeve M, Colombo SM, Arts MT. Handling and storage procedures have variable effects on fatty acid content in fishes with different lipid quantities. PLoS One. 2016;11(8):1–19. https://doi.org/10.1371/journal.pone.0160497.

    Article  CAS  Google Scholar 

  23. Lukowski JK, Pamreddy A, Velickovic D, Zhang G, Pasa-Tolic L, Alexandrov T, et al. Storage conditions of human kidney tissue sections affect spatial lipidomics analysis reproducibility. J Am Soc Mass Spectrom. 2020;31(12):2538–46.

    Article  CAS  Google Scholar 

  24. Budge SM. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar Mamm Sci. 2006;22(4):759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x.

    Article  Google Scholar 

  25. Ingemansson T, Kaufmann P, Ekstrand B. Multivariate evaluation of lipid hydrolysis and oxidation data from light and dark muscle of frozen stored rainbow trout. J Agric Food Chem. 1995;43(8):2046–52. https://doi.org/10.1021/jf00056a017.

    Article  CAS  Google Scholar 

  26. Alqahtani S, Kobos LM, Xia L, Ferreira C, Franco J, Du X, et al. Exacerbation of nanoparticle-induced acute pulmonary inflammation in a mouse model of metabolic syndrome. Front. Cell Dev. Biol. 2020;11(May):1–16. https://doi.org/10.3389/fimmu.2020.00818.

    Article  CAS  Google Scholar 

  27. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extracation and purification. Can J Biochem Physiol 37

  28. Franco J, Ferreira C, Sobreira TJP, Sundberg JP, Hogenesch H. Profiling of epidermal lipids in a mouse model of dermatitis : identification of potential biomarkers. PLoS One. 2018. 1–21

  29. de Lima CB, Ferreira CR, Milazzottta MP, Sobreira TJP, Vireque AA, Cooks GR. Comprehensive lipid profiling of early stage oocytes and embryos by MRM profiling. J Mass Spectrom. 2018. https://doi.org/10.1002/jms.4301.

  30. Dipali SS, Ferreira CR, Zhou LT, Pritchard MT, Duncan FE. Histologic analysis and lipid profiling reveal reproductive age-associated changes in peri-ovarian adipose tissue. Reprod Biol Endocrinol. 2019;6:1–13.

    Google Scholar 

  31. O’Neil EV, Burns GW, Ferreira CR, Spencer TE. Characterization and regulation of extracellular vesicles in the lumen of the ovine uterus. Biol Reprod. 2020;102(5):1020–32. https://doi.org/10.1093/biolre/ioaa019.

    Article  PubMed  Google Scholar 

  32. Suarez-Trujillo A, Huff K, Ferreira CR, Jose TJP, Buhman KK, Casey T. High-fat-diet induced obesity increases the proportion of linoleic acyl residues in dam serum and milk and in suckling neonate circulation. Biol Reprod. 2020;1(1):1–14. https://doi.org/10.1093/biolre/ioaa103.

    Article  Google Scholar 

  33. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A. 1997;94(6):2339–44.

    Article  CAS  Google Scholar 

  34. Spickett CM, Pitt AR. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal. 2015;22(18):1646–66. https://doi.org/10.1089/ars.2014.6098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boogaart KGvd, Tolosana-Delgado R. Fundamental concepts of compositional data analysis. Use R!: Springer Berlin Heidelberg; 2013. p. 13–50

  36. Dunlap WP, Dietz J, Cortina JM. The spurious correlation of ratios that have common variables: a Monte Carlo examination of Pearson’s formula. J Gen Psychol. 1997;124(2):182–93. https://doi.org/10.1080/00221309709595516.

    Article  Google Scholar 

  37. Pearson K. Mathematical contributions to the theory of evolution.—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 1897;60(359–367):489–498. https://doi.org/10.1098/rspl.1896.0076.

  38. Chayes F, Trochimczyk J. An effect of closure on the structure of principal components. Math Geosci. 1978;10(4):323–33. https://doi.org/10.1007/BF01031737.

    Article  CAS  Google Scholar 

  39. Tsagris M, Preston S, Wood ATA. Improved classification for compositional data using the α-transformation. J Classif. 2016;33(2):243–61. https://doi.org/10.1007/s00357-016-9207-5.

    Article  Google Scholar 

  40. Franco J, Rajwa B, Ferreira CR, Sundberg JP, HogenEsch H. Lipidomic profiling of the epidermis in a mouse model of dermatitis reveals sexual dimorphism and changes in lipid composition before the onset of clinical disease. Metabolites. 2020;10(7). https://doi.org/10.3390/metabo10070299.

  41. Lenth RV. Least-squares means: the R package lsmeans. J. Stat. Softw. 2016;69(1). doi:https://doi.org/10.18637/jss.v069.i01.

  42. Aubourg SP, Medina I. Influence of storage time and temperature on lipid deterioration during cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) frozen storage. J Sci Food Agric. 1999;79(13):1943–8.

    Article  CAS  Google Scholar 

  43. Patterson NH, Thomas A, Chaurand P. Monitoring time-dependent degradation of phospholipids in sectioned tissues by MALDI imaging mass spectrometry. J Mass Spectrom. 2014;49(7):622–7. https://doi.org/10.1002/jms.3382.

    Article  CAS  PubMed  Google Scholar 

  44. Dill AL, Eberlin LS, Costa AB, Ifa DR, Cooks RG. Data quality in tissue analysis using desorption electrospray ionization. Anal Bioanal Chem. 2011;401(6):1949–61. https://doi.org/10.1007/s00216-011-5249-z.

    Article  CAS  PubMed  Google Scholar 

  45. Liu K, Liu Y, Chen F. Effect of storage temperature on lipid oxidation and changes in nutrient contents in peanuts. Food Sci Nutr. 2019;7(7):2280–90. https://doi.org/10.1002/fsn3.1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wazir H, Chay SY, Zarei M, Hussin FS, Mustapha NA, Ibadullah WZW, et al. Effects of storage time and temperature on lipid oxidation and protein co-oxidation of low-moisture shredded meat products. Antioxidants. 2019;8(10):1–17.

    Article  Google Scholar 

  47. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2017;19:175–91. https://doi.org/10.1038/nrm.2017.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Echten-deckert GV, Herget T. Sphingolipid metabolism in neural cells. Biochim Biophys Acta. 1758;2006:1978–94. https://doi.org/10.1016/j.bbamem.2006.06.009.

    Article  CAS  Google Scholar 

  49. Hirabayashi Y. A world of sphingolipids and glucolipidsin the brain: novel functions of simple lipids modified with glucose. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2012;88(4):129–43.

    Article  CAS  Google Scholar 

  50. Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2019;18(26):1–12.

    Google Scholar 

  51. Kraft ML. Sphingolipid Organization in the Plasma Membrane and the mechanisms that influence it. Front Cell Dev Biol. 2017;4(154):1–19. https://doi.org/10.3389/fcell.2016.00154.

    Article  Google Scholar 

  52. Sandhoff K. Sphingolipidoses. J Clin Pathol. 1973;27(8):94–105.

    Google Scholar 

  53. Yatsu F. Sphingolipidoses. Calif. Med. 1971;114(4):1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cha HJ, He C, Zhao H, Dong Y, An I-s, An S. Intercellular and intracellular functions of ceramides and their metabolites in skin. Int J Mol Med. 2016;38(1):16–22. https://doi.org/10.3892/ijmm.2016.2600.

    Article  CAS  PubMed  Google Scholar 

  55. Pattingre S, Bauvy C, Levade T, Levine B, Codogno P. Ceramide-induced autophagy: to junk or to protect cells? Autophagy. 2009;5(4):558–60. https://doi.org/10.4161/auto.5.4.8390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Purdue Metabolite Profiling Facility for their assistance in data generation and analysis.

Funding

This study was supported by the National Institute of Environmental Health Sciences Grant R00/ES024392.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bartek Rajwa or Jonathan Shannahan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Declarations

All animal procedures were conducted in accordance with the National Institutes of Health guidelines and approved by the Purdue University Animal Care and Use Committee.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 12 kb)

ESM 2

(DOCX 49.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobos, L., Ferreira, C.R., Sobreira, T.J.P. et al. A novel experimental workflow to determine the impact of storage parameters on the mass spectrometric profiling and assessment of representative phosphatidylethanolamine lipids in mouse tissues. Anal Bioanal Chem 413, 1837–1849 (2021). https://doi.org/10.1007/s00216-020-03151-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03151-0

Keywords