Abstract
When n − k systems of an n-partite permutation-invariant state are traced out, the resulting state can be approximated by a convex combination of tensor product states. This is the quantum de Finetti theorem. In this paper, we show that an upper bound on the trace distance of this approximation is given by \({2\frac{kd^2}{n}}\) , where d is the dimension of the individual system, thereby improving previously known bounds. Our result follows from a more general approximation theorem for representations of the unitary group. Consider a pure state that lies in the irreducible representation \({U_{\mu +\nu} \subset U_\mu \otimes U_\nu}\) of the unitary group U(d), for highest weights μ, ν and μ + ν. Let ξμ be the state obtained by tracing out U ν. Then ξμ is close to a convex combination of the coherent states \({U_\mu(g)|{v_\mu\rangle}}\) , where \({g\in U(d)}\) and \({|v_\mu\rangle}\) is the highest weight vector in U μ.
For the class of symmetric Werner states, which are invariant under both the permutation and unitary groups, we give a second de Finetti-style theorem (our “half” theorem). It arises from a combinatorial formula for the distance of certain special symmetric Werner states to states of fixed spectrum, making a connection to the recently defined shifted Schur functions [1]. This formula also provides us with useful examples that allow us to conclude that finite quantum de Finetti theorems (unlike their classical counterparts) must depend on the dimension d. The last part of this paper analyses the structure of the set of symmetric Werner states and shows that the product states in this set do not form a polytope in general.
Similar content being viewed by others
References
Okounkov, A., Olshanski, G.: Alg. i Anal. 9, no. 2, 13–146 (1997) (Russian); Eng. in st. Petersburg Math. J 9, no. 2 (1998)
de Finetti B. (1937). Ann. Inst. H. Poincaré 7: 1
Størmer E. (1969). J. Funct. Anal. 3: 48
Hudson R.L., Moody G.R. and Wahrschein Z. (1976). verw. Geb. 33: 343
Petz D. (1990). Prob. Th. Rel. Fields. 85: 1–11
Caves C.M., Fuchs C.A. and Schack R. (2002). J. Math. Phys. 43: 4537
Fuchs CA, Schack R: In: Quantum Estimation Theory, M.G.A. Paris, J. Rehaeck (eds), Berlin: Springer, 2004
Fuchs C.A., Schack R. and Scudo P.F. (2004). Phys. Rev. A 69: 062305
König R. and Renner R. (2005). J. Math. Phys. 46: 122108
Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich, 2005, available at http://axiv.org/list/quant-ph/0512258, 2005
Werner R.F. (1989). Phys. Rev. A 40: 4277
Carter, R., Segal, G., MacDonald, I.: Lectures on Lie Groups and Lie Algebras. London Mathematical Society Student Texts vol. 32, 1st ed, Cambridge: Cambridge Univ. Press, 1995
Perelomov, A.: Generalized coherent states and their application. Texts and Monographs in Physics, Berlin: Springer-Verlag, 1986
Weyl H. (1950). The Theory of Groups and Quantum Mechanics. Dover Publications, Inc, New York
Diaconis P. and Freedman D. (1980). The Annals of Probability 8: 745
Fannes M., Lewis J.T. and Verbeure A. (1988). Lett. Math. Phys. 15: 255
Raggio G.A. and Werner R.F. (1989). Helv. Phys. Acta 62: 980
Ioannou, L.M.: Deterministic computational complexity of the quantum separability problem. http://arxiv.org/list/quant-ph/0603199; 2006, to appear in QIP, 2006
Doherty, A.: Personal communication, 2006
Audenaert, K.: Available at http://qols.ph.ic.ac.uk/ ∼kauden/QITNotes_files/irreps.pdf, 2004
Fulton, W.F.: Young Tableaux. Cambridge: Cambridge University Press, 1997
Eggeling, T., Werner, R.F.: Phys. Rev. A 63, 04211 (2001)
Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford: Clarendon Press, 1979
Klyachko, A.: http:/laxiv.org/list/quant-ph/0206012, 2002
Keyl M. and Werner R.F. (2001). Phys. Rev. A 64: 052311
Hudson R.L. (1981). Found. Phys. 11: 805
Fannes M., Spohn H. and Verbeure A. (1980). J. Math. Phys. 21: 355
Brun T.A., Caves C.M. and Schack R. (2001). Phys. Rev. A 63: 042309
Doherty A.C., Parillo P.A. and Spedalieri F.M. (2004). Phys. Rev. A 69: 022308
Audenaert KMR.: In: Proceedings of MTNS2004 (2004), available at http://arxiv.org/list/quant-ph/ 0402076, 2004
Terhal B.M., Doherty A.C. and Schwab D. (2003). Phys. Rev. Lett 90: 157903
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M.B. Ruskai
Rights and permissions
About this article
Cite this article
Christandl, M., König, R., Mitchison, G. et al. One-and-a-Half Quantum de Finetti Theorems. Commun. Math. Phys. 273, 473–498 (2007). https://doi.org/10.1007/s00220-007-0189-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-007-0189-3