Abstract
We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu–Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These “polynomial shift symmetries” in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.
Similar content being viewed by others
References
’t Hooft G.: Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO ASI Ser. B 59, 135 (1980)
Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D79, 084008 (2009). [arXiv:0901.3775]
Hořava, P.: Membranes at quantum criticality. JHEP 0903, 020 (2009). [arXiv:0812.4287]
Mukohyama, S.: Hořava–Lifshitz cosmology: a review. Class. Quant. Grav. 27, 223101 (2010). [arXiv:1007.5199]
Ambjørn, J., Görlich, A., Jordan, S., Jurkiewicz, J., Loll, R.: CDT meets Hořava–Lifshitz gravity. Phys. Lett. B690, 413–419 (2010). [arXiv:1002.3298]
Hořava, P.: General covariance in gravity at a Lifshitz point. Class. Quant. Grav. 28, 114012 (2011). [arXiv:1101.1081]
Anderson, C., Carlip, S.J., Cooperman, J.H., Hořava, P., Kommu, R.K., et al.: Quantizing Hořava–Lifshitz gravity via causal dynamical triangulations. Phys. Rev. D85, 044027 (2012). [arXiv:1111.6634]
Janiszewski, S., Karch, A.: String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals. Phys. Rev. Lett. 110(8), 081601 (2013) [arXiv:1211.0010]
Janiszewski, S., Karch, A.: Non-relativistic holography from Hořava gravity. JHEP 1302, 123 (2013). [arXiv:1211.0005]
Griffin, T., Hořava, P., Melby-Thompson, C.M.: Lifshitz gravity for Lifshitz holography. Phys. Rev. Lett. 110, 081602 (2013). [arXiv:1211.4872]
Griffin, T., Grosvenor, K.T., Hořava, P., Yan, Z.: Multicritical symmetry breaking and naturalness of slow Nambu–Goldstone bosons. Phys. Rev. D88, 101701 (2013). [arXiv:1308.5967]
Watanabe, H., Murayama, H.: Unified description of Nambu–Goldstone bosons without Lorentz invariance. Phys. Rev. Lett. 108, 251602 (2012). [arXiv:1203.0609]
Nicolis, A., Rattazzi, R., Trincherini, E.: The Galileon as a local modification of gravity. Phys. Rev. D79, 064036 (2009). [arXiv:0811.2197]
Griffin, T., Grosvenor, K.T., Hořava, P., Yan, Z.: Cascading multicriticality in nonrelativistic spontaneous symmetry breaking. High Energy Phys. Theory (2015). [arXiv:1507.06992]
Hořava, P., Melby-Thompson, C.M.: General covariance in quantum gravity at a Lifshitz point. Phys. Rev. D82, 064027 (2010). [arXiv:1007.2410]
Hořava, P., Melby-Thompson, C.M.: Anisotropic conformal infinity. Gen. Rel. Grav. 43, 1391 (2010). [arXiv:0909.3841]
Kachru, S., Liu, X., Mulligan, M.: Gravity duals of Lifshitz-like fixed points. Phys. Rev. D78, 106005 (2008). [arXiv:0808.1725]
Hinterbichler, K., Joyce, A.: Goldstones with extended shift symmetries. Int. J. Mod. Phys. D23, 1443001 (2014). [arXiv:1404.4047]
Mermin N., Wagner H.: Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966)
Hohenberg P.: Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967)
Coleman S.R.: There are no Goldstone bosons in two dimensions. Commun. Math. Phys. 31, 259–264 (1973)
Watanabe, H., Murayama, H.: Effective Lagrangian for Nonrelativistic Systems. Phys. Rev. X4(3), 031057 (2014). [arXiv:1402.7066]
Bondy A., Murty U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer, London (2008)
Coleman S.R., Wess J., Zumino B.: Structure of phenomenological Lagrangians. 1. Phys. Rev. 177, 2239–2247 (1969)
Callan J., Curtis G., Coleman S.R., Wess J., Zumino B.: Structure of phenomenological Lagrangians. 2. Phys. Rev. 177, 2247–2250 (1969)
Volkov D.V.: Phenomenological lagrangians. Fiz. Elem. Chast. Atom. Yadra 4, 3–41 (1973)
Ogievetsky, V.: Nonlinear realizations of internal and space-time symmetries. In: Proceeding of X-th Winter School of Theoretical Physics in Karpacz 1 (1974)
Goon, G., Hinterbichler, K., Joyce, A., Trodden, M.: Galileons as Wess-Zumino terms. JHEP 1206, 004 (2012). [arXiv:1203.3191]
de Azcárraga J.A., Izquierdo J.M.: Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics. Cambridge University Press, Cambridge (1998)
Ivanov E.A., Ogievetskii V.I.: Inverse Higgs effect in nonlinear realizations. Theor. Math. Phys. 25(2), 1050 (1975)
Brauner, T., Watanabe, H.: Spontaneous breaking of spacetime symmetries and the inverse Higgs effect. Phys. Rev. D89, 085004 (2014). [arXiv:1401.5596]
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Ooguri
Rights and permissions
About this article
Cite this article
Griffin, T., Grosvenor, K.T., Hořava, P. et al. Scalar Field Theories with Polynomial Shift Symmetries. Commun. Math. Phys. 340, 985–1048 (2015). https://doi.org/10.1007/s00220-015-2461-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-015-2461-2