Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Curvature discrimination in various finger conditions

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The ability of humans to discriminate curvature was investigated for different finger conditions. The experiments were conducted in which subjects explored cylindrically curved stimuli by touch. Using a 2-alternative forced–choice procedure, discrimination thresholds and biases were measured for several conditions. In 1-finger conditions, reference and test stimulus were explored with the same finger, whereas in 2-finger conditions these stimuli were felt with different fingers. Similar thresholds were obtained for the 1-finger conditions, in which either the preferred or the non-preferred index finger or the thumb was employed. However, significantly higher thresholds were found for the conditions in which subjects used two fingers, either of the same hand or of different hands. Interestingly, even higher thresholds were obtained for a 2-finger condition in which subjects explored the stimuli simultaneously instead of sequentially. In addition, subject-dependent biases were found in the 2-finger conditions. We conclude that the number of fingers and the mode of exploration have a considerable effect on performance in a haptic task such as curvature discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballesteros S, Manga D, Reales JM (1997) Haptic discrimination of bilateral symmetry in 2-dimensional and 3-dimensional unfamiliar displays. Percept Psychophys 59(1):37–50

    PubMed  CAS  Google Scholar 

  • Bradshaw JL, Nicholls MER, Rogers MA (1998) An intermanual advantage for tactual matching. Cortex 34:763–770

    PubMed  CAS  Google Scholar 

  • Braun C, Hess H, Burkhardt M, Wühle A, Preissl H (2005) The right hand knows what the left hand is feeling. Exp Brain Res 162:366–373

    Article  PubMed  Google Scholar 

  • Coren S (1993) The left-hander syndrome. Vintage Books, New York

    Google Scholar 

  • Charron JF, Collin I, Braun CM (1996) Intermanual transfer of somaesthetic information: a two-point discrimination experiment. Neuropsychologia 34(9):873–877

    Article  PubMed  CAS  Google Scholar 

  • Evans PM, Craig JC (1991) Tactile attention and the perception of moving tactile stimuli. Percept Psychophys 49(4):355–364

    PubMed  CAS  Google Scholar 

  • Evans PM, Craig JC, Rinker MA (1992) Perceptual processing of adjacent and nonadjacent tactile nontargets. Percept Psychophys 52(5):571–581

    PubMed  CAS  Google Scholar 

  • Gordon IE, Morison V (1982) The haptic perception of curvature. Percept Psychophys 31(5):446–450

    PubMed  CAS  Google Scholar 

  • Goodwin AW, John KT, Marceglia AH (1991) Tactile discrimination of curvature by humans using only cutaneous information from the fingerpads. Exp Brain Res 86:663–672

    Article  PubMed  CAS  Google Scholar 

  • Goodwin AW, Browning AS, Wheat HE (1995) Representation of curved surfaces in responses of mechanoreceptive afferent fibers innervating the monkey’s fingerpad. J Neurosci 15(1):798–810

    PubMed  CAS  Google Scholar 

  • Goodwin AW, Macefield VG, Bisley JW (1997) Encoding of object curvature by tactile afferents from human fingers. J Neurophysiol 78:2881–2888

    PubMed  CAS  Google Scholar 

  • Harris JA, Harris IM, Diamond ME (2001) The topography of tactile learning in humans. J Neurosci 21(3):1056–1061

    PubMed  CAS  Google Scholar 

  • Henriques DYP, Soechting JF (2003) Bias and sensitivity in the haptic perception of geometry. Exp Brain Res 150:95–108

    PubMed  Google Scholar 

  • Jansson G, Monaci L (2004) Haptic identification of objects with different number of fingers. In: Ballesteros S, Heller MA (eds) Touch, blindness, and neuroscience. UNED, Madrid pp 209–219

    Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    Article  PubMed  CAS  Google Scholar 

  • Johnson KO, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17(6):539–558

    Article  PubMed  CAS  Google Scholar 

  • Kappers AML, Koenderink JJ (1996) Haptic unilateral and bilateral discrimination of curved surfaces. Perception 25(6):739–749

    Article  PubMed  CAS  Google Scholar 

  • Kappers AML, Koenderink JJ, Te Pas SF (1994) Haptic discrimination of doubly curved surfaces. Perception 23:1483–1490

    Article  PubMed  CAS  Google Scholar 

  • Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cognit Psychol 19(3):342–368

    Article  PubMed  CAS  Google Scholar 

  • Louw S, Kappers AML, Koenderink JJ (2000) Haptic detection thresholds of Gaussian profiles over the whole range of scales. Exp Brain Res 132:369–374

    Article  PubMed  CAS  Google Scholar 

  • Louw S, Kappers AML, Koenderink JJ (2002) Active haptic detection and discrimination of shape. Percept Psychophys 64(7):1108–1119

    PubMed  CAS  Google Scholar 

  • Nefs HT, Kappers AML, Koenderink JJ (2005) Intermanual and intramanual tactual grating discrimination. Exp Brain Res 163:123–127

    Article  PubMed  Google Scholar 

  • Pont SC, Kappers AML, Koenderink JJ (1997) Haptic curvature discrimination at several regions of the hand. Percept Psychophys 59(8):1225–1240

    PubMed  CAS  Google Scholar 

  • Pont SC, Kappers AML, Koenderink JJ (1998) The influence of stimulus tilt on haptic curvature matching and discrimination by dynamic touch. Perception 27:869–880

    Article  PubMed  CAS  Google Scholar 

  • Pont SC, Kappers AML, Koenderink JJ (1999) Similar mechanisms underlie curvature comparison by static and dynamic touch. Percept Psychophys 61(5):874–89

    PubMed  CAS  Google Scholar 

  • Provancher WR, Cutkosky MR, Kuchenbecker KJ, Niemeyer G (2005) Contact location display for haptic perception of curvature and object motion. Int J Robot Res 24(9):691–702

    Article  Google Scholar 

  • Russier S (1999) Haptic discrimination of two-dimensional raised line shapes by blind and sighted adults. J Vis Impair Blind 93(7):421–426

    Google Scholar 

  • Sanders AFJ, Kappers AML (2006) Bimanual curvature discrimination of hand-sized surfaces placed at different positions. Percept Psychophys (in press)

  • Sathian K, Zangaladze A (1996) Tactile spatial acuity at the human fingertip and lip: bilateral symmetry and interdigit variability. Neurology 46:1464–1466

    PubMed  CAS  Google Scholar 

  • Schnitzler A, Salmelin R, Salenius S, Jousmäki V, Hari R (1995) Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett 200:25–28

    Article  PubMed  CAS  Google Scholar 

  • Schweizer R, Maier M, Braun C, Birbaumer N (2000) Distribution of mislocalizations of tactile stimuli on the fingers of the human hand. Somatosens Mot Res 17(4):309–316

    Article  PubMed  CAS  Google Scholar 

  • Van Boven RW, Johnson KO (1994) The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger. Neurology 44:2361–2366

    PubMed  Google Scholar 

  • Vogels IMLC, Kappers AML, Koenderink JJ (1996) Haptic after-effect of curved surfaces. Perception 25(1):109–119

    Article  PubMed  CAS  Google Scholar 

  • Voisin J, Michaud G, Chapman CE (2005) Haptic shape discrimination in humans: insight into haptic frames of reference. Exp Brain Res 164:347–356

    Article  PubMed  Google Scholar 

  • Weber EH (1834) De tactu. translation. In: Ross HE, Murray JD (eds) (1996) EH Weber: on the tactile senses. Academic, London pp 21–136

    Google Scholar 

  • Weinstein S (1968) Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo DR (ed) The skin senses. Thomas Spring Field, Illinois, pp 195–222

    Google Scholar 

  • Wheat HE, Goodwin AW, Browning AS (1995) Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine positions of objects contacting the fingerpad. J Neurosci 15(8):5582–5595

    PubMed  CAS  Google Scholar 

  • Wichmann FA, Hill NJ (2001) The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63(8):1314–1329

    PubMed  CAS  Google Scholar 

  • Zuidhoek S, Kappers AML, Van der Lubbe RHJ, Postma A (2003) Delay improves performance on a haptic spatial matching task. Exp Brain Res 149:320–330

    PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by a grant from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard J. van der Horst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Horst, B., Kappers, A.M.L. Curvature discrimination in various finger conditions. Exp Brain Res 177, 304–311 (2007). https://doi.org/10.1007/s00221-006-0670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0670-9

Keywords