Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Revisiting Connected Vertex Cover: FPT Algorithms and Lossy Kernels

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

The Connected Vertex Cover problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumptions) when parameterized by the solution size. In a recent paper, Lokshtanov et al. [STOC 2017], have shown an α-approximate kernel for the problem for every α > 1, in the framework of approximate or lossy kernelization. In this work, we exhibit lossy kernels and FPT algorithms for Connected Vertex Cover for parameters that are more natural and functions of the input, and in some cases, smaller than the solution size. Our first result is a lossy kernel for Connected Vertex Cover parameterized by the size of a split deletion set. Let n denote the number of vertices in the input graph. We show that

  • Connected Vertex Cover parameterized by the size k of a split deletion set admits an α-approximate kernel with \(\mathcal {O}(k+(2k+\lceil \frac {2\alpha -1}{\alpha -1} \rceil )^{\lceil \frac {2\alpha -1}{\alpha -1} \rceil })\) vertices and an algorithm with \(\mathcal {O}(3^{k} n^{\mathcal {O}(1)})\) running time.

  • For the special case when the split deletion set is a clique deletion set, the algorithm runs in \({\mathcal O}(2^{k} n^{{\mathcal O}(1)})\) time and the lossy kernel has \(\mathcal {O}(k + \lceil \frac {2\alpha -1}{\alpha -1} \rceil )\) vertices.

To the best of our knowledge, this (approximate) kernel is one of the few lossy kernels for problems parameterized by a structural parameter (that is not solution size). We extend this lossy kernelization to Connected Vertex Cover parameterized by an incomparable parameter, and that is the size of a clique cover. We show that

  • Connected Vertex Cover parameterized by the size k of a clique cover is W[1]-hard but admits an α-approximate kernel with \(\mathcal {O}(k \lceil \frac {2\alpha -1}{\alpha -1} \rceil )\) vertices for every α > 1. This is one of the few problems that are not FPT but admit a lossy kernel.

Finally, we consider the size of a cluster deletion set as parameter. We show that

  • Connected Vertex Cover parameterized by the size k of a cluster deletion set is FPT via an algorithm with running time \({\mathcal O}(4^{k} n^{{\mathcal O}(1)})\). It also admits an α-approximate kernel with \(\mathcal {O}(k^{2}+\lceil \frac {2\alpha -1}{\alpha -1} \rceil \cdot \frac {k}{\alpha -1}+ \lceil \frac {\alpha }{\alpha -1} \rceil \cdot k^{\lceil \frac {\alpha }{\alpha -1} \rceil })\) vertices for every α > 1.

  • For the special case when the cluster deletion set is a degree-1 modulator, the FPT algorithm runs in \({\mathcal O}(3^{k} n^{{\mathcal O}(1)})\) time and the lossy kernel has \(\mathcal {O}(k^{2}+\frac {k}{\alpha -1}+ \lceil \frac {\alpha }{\alpha -1} \rceil \cdot k^{\lceil \frac {\alpha }{\alpha -1} \rceil })\) vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A chordal graph is a graph in which every induced cycle is a triangle and a chordal deletion set is a subset of vertices whose deletion results in a chordal graph.

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1-2), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by Treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Jansen, B.M.P.: Vertex cover kernelization revisited: upper and lower bounds for a refined parameter. Theory Comput. Syst. 63(2), 263–299 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M.: Deterministic Parameterized Connected Vertex Cover. In: Proceedings of the 13Th Scandinavian Workshop on Algorithm Theory (SWAT), pp 95–106 (2012)

  8. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  10. Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5-6), 179–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diestel, R.: Graph Theory, Graduate Text in Mathematics. Springer, Berlin (2012)

    Google Scholar 

  12. Dom, M., Lokshatanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

    Article  MathSciNet  Google Scholar 

  13. Escoffier, B., Gourvès, L., Monno, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algoritms 8(1), 36–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., Bedford (1979)

    MATH  Google Scholar 

  16. Golumbic, M.C.: Algorithmic Graph Theory for Perfect Graphs. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Jansen, B.M.P.: The Power of Data Reduction: Kernels for Fundamental Graph Problems. PhD Thesis, Utrecht University, The Netherlands (2013)

    Google Scholar 

  18. Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jansen, B.M.P., Kratsch, S.: Data reduction for coloring problems. Inf. Comput. 231, 70–88 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings of the 49Th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp 224–237 (2017)

  23. Moser, H.: Exact Algorithms for Generalizations of Vertex Cover. Master’s Thesis, Institut für Informatik, Friedrich-Schiller-Universität (2005)

  24. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discret. Math. 72, 355–360 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, B.Y.: A measure and conquer Based approach for the parameterized hounded degree-one vertex deletion. In: Proceedings of the 21St International Computing and Combinatorics Conference (COCOON), pp 469–480 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptapriyo Majumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithika, R., Majumdar, D. & Raman, V. Revisiting Connected Vertex Cover: FPT Algorithms and Lossy Kernels. Theory Comput Syst 62, 1690–1714 (2018). https://doi.org/10.1007/s00224-017-9837-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9837-y

Keywords