Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Applications of biopolymers and other biotechnological products in building materials

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bio admixtures are functional molecules used in building products to optimize material properties. They include natural or modified biopolymers, biotechnological and biodegradable products. Concrete and dry-mix mortars (e.g. wall plasters or tile adhesives) represent two major applications for bio admixtures. Examples of bio products used in concrete are lignosulfonate, sodium gluconate, pine root extract, protein hydrolysates and Welan gum; and in dry-mix mortar methyl hydroxypropyl cellulose, hydroxypropyl starch, guar gum, tartaric acid, casein, succinoglycan and Xanthan gum. In a number of applications, bio admixtures compete well with synthetic admixtures. Sometimes, they are indispensable in the formulation of certain building products. Their market share is expected to increase because of technological advances, particularly in the field of microbial biopolymers, and because of the growing trend to use naturally based or biodegradable products in building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aqualon (1996) Technical brochure “Aqualon products for masonry mortar”. Hercules Inc., Wilmington, p 7

    Google Scholar 

  • Bayer R, Lutz H (2003) Dry mortars, 6th edn. (Ullmann’s encyclopedia of industrial chemistry, vol 9) Wiley–VCH, Weinheim, pp 83–108

    Google Scholar 

  • Carpenter RB, Loughridge BW, Ravi KM, Wilson JJ, Johnson DL, Jones RR (1997) Halliburton and Atlantic Richfield. European patent EP 814 232

  • Charrin P (1997) Neue Additive für Spachtel- und Flieβestriche und selbstverlaufende Massen. Conf Proc Beschichtungen Bauchem. Vincentz, Kassel

    Google Scholar 

  • Clariant (1998) Technical brochure “Modern and efficient building with Tylose and auxiliaries”. Clariant, Frankfurt

    Google Scholar 

  • Darley HCH, Gray GR (1988) Composition and properties of drilling and completion fluids. Gulf, Houston

    Google Scholar 

  • Dimitru S (1998) Polysaccharides—structural diversity and functional versatility. Dekker, New York

    Google Scholar 

  • Distler D (1999) Wäβrige Polymerdispersionen. Wiley–VCH, Weinheim

    Google Scholar 

  • Dönges S (1990) Non-ionic cellulose ethers. Br Polym J 23:315–326

    Google Scholar 

  • Forg G (1989) Einfluβ von verschiedenen Verzögerern auf die Kristallisation und die Festigkeiten von Stuckgips. ZKG 5:229–232

    Google Scholar 

  • Freitag W, Stoye D (1998) Paints, coatings and solvents. Wiley–VCH, Weinheim

    Google Scholar 

  • Hibino M (2000) Effect of viscosity enhancing agent on self-compactability of fresh concrete. Proc CANMET/ACI Int Conf 6:305–320

    Google Scholar 

  • Hill JR, Plank J (2004) Retardation of setting of plaster of Paris by organic acids: understanding the mechanism through molecular modelling. J Comput Chem (in press)

    Google Scholar 

  • Hummel HU, Freyer D, Schneider J, Voigt W (2003) Die Wirkung von Additiven auf den Kristallhabitus von alpha-Calciumsulfat-hemihydrat—experimentelle Befunde und molekulare Simulation. ZKG Int 56:61–69

    CAS  Google Scholar 

  • Kerkhoff B, Panarese W, Kosmatka St (2002) Design and control of concrete mixtures, 14th edn. Portland Cement Association, Skokie

    Google Scholar 

  • Khayat KH, Yahia A (1997) Effect of Welan gum—high range water reducer combinations on rheology of cement grout. ACI Mater J 1997:365–372

    Google Scholar 

  • Kumosinski TF, Uknalis J, Cooke PH, Farrell HM (1996) Correlation of refined models for casein submicelles with electron microscopic studies of casein, Lebensm-Wiss Technol 29:326–333

    Article  CAS  Google Scholar 

  • Lin SY, Lebo SE (1995) Lignin, 4th edn. (Kirk–Othmer encyclopedia of chemical technology, vol 15) Wiley, New York

    Google Scholar 

  • Lamberti (2002) Technical brochure “Esacol-Origin, Chemical and Physical Properties”. Lamberti, Albizzate

    Google Scholar 

  • Molteni G, Nicora C, Cesaro A, Prici S (1998) Lamberti. European patent 323 627

  • Navarrete RC, Seheult JM, Coffey MD (2001) New biopolymers for drilling, drill-in, completions, spacer, and coil-tubing fluid. SPE Int Symp Oilfield Chem. 2001:64.982

  • Nelson EB (1990) Well cementing. Schlumberger, Sugar Land

    Google Scholar 

  • Plank J (2003) Applications of biopolymers in construction engineering. In: Steinbüchel A (ed) Biopolymers, vol 10. Wiley–VCH, Weinheim, pp 29–95

    Google Scholar 

  • Plank J, Winter C (2003) Adsorption von Flieβmitteln an Zement in Gegenwart von Verzögerern. GDCh Monogr 27:55–64

    Article  Google Scholar 

  • Ramachandran VS (1995) Concrete admixtures handbook. Noyes, Park Ridge

    Google Scholar 

  • Ramachandran VS, Malhotra VM, Jolicoeur C, Spiratos N (1998) Superplasticizers: properties and applications in concrete. CANMET, Ottawa

    Google Scholar 

  • Reul H (1991) Handbuch der Bauchemie. Ziolkowsky, Augsburg

    Google Scholar 

  • Rixom R, Mailvaganam N (1999) Chemical admixtures for concrete. Spon, London

    Google Scholar 

  • Shonaka M, Kitagawa K, Satoh H, Izumi T, Mizunuma T (1997) Chemical structures and performance of new high-range water-reducing and air-entraining agents. In: Malhotra VM (ed) Fifth CANMET/ACI international conference on superplasticizers and other chemical admixtures in concrete. (ACI SP-173) ACI, Rome, pp 599–614

  • Singh NB (1976) Effect of gluconates on the hydration of cement. Cem Concr Res 6:455–460

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK, Sing RP (2003) Gluconic acid production under varying fermentation conditions by Aspergillus niger. J Chem Technol Biotechnol 78:208–212

    Article  CAS  Google Scholar 

  • Skaggs CB (1997) Impact of biopolymer chemistry on performance in cementitious systems. In: Malhotra VM (ed) Proceedings of the 5th CANMET/ACI International conference on superplasticizers and other chemical admixtures in concrete. (ACI SP-173) ACI, Rome

  • Spiratos N, Pagé M, Mailvaganam NP, Malhotra VM, Jolicoeur C (2003) Superplasticizers for concrete. ACI, Ottawa

  • Strauβ W (2001) Verwendung von pulverförmigen Polycarboxylat-Ethern als Flieβmittel für caseinfreie selbstverlaufende zementäre Fuβbodenspachtel- und Ausgleichsmassen. (Conf Proc Bauchem Kongr 3) Vincentz, Nürnberg

    Google Scholar 

  • Vitruvius Pollio M (2001) De architectura. Birkhäuser, Basel

    Google Scholar 

  • Wirsching F (1985) Calcium sulfate. (Ullmann’s encyclopedia of industrial chemistry, vol A4) VCH, Weinheim, pp 555–584

    Google Scholar 

  • Wöhrmeyer C, Bier ThA, Amathieu L (2000) Calcium aluminates for demanding thin bed mortars, 14. ibausil, Weimar, vol 2, pp 1143–1150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Plank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plank, J. Applications of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol 66, 1–9 (2004). https://doi.org/10.1007/s00253-004-1714-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1714-3

Keywords