Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His6-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn J, Wong JT, Molday RS (2000) The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy. J Biol Chem 275:20399–20405

    CAS  PubMed  Google Scholar 

  • Altenbuchner J, Viell P, Pelletier I (1992) Positive selection vectors based on palindromic DNA sequences. Methods Enzymol 216:457–466

    CAS  PubMed  Google Scholar 

  • Altenbuchner J, Stumpp T, Wilms B (2000) Ein neues, L-Rhamnose-induzierbares Expressionssystem für Escherichia coli. Biospektrum 1:33–36

    Google Scholar 

  • Ambudkar SV, Lelong IH, Zhang J, Cardarelli CO, Gottesman MM, Pastan I (1992) Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci USA 89:8472–8476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baltz RH (2002) Combinatorial glycosylation of glycopeptide antibiotics. Chem Biol 9:1268–1270

    CAS  PubMed  Google Scholar 

  • Barna JC, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357

    CAS  PubMed  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32(Database issue):D138–D141

    Google Scholar 

  • Biemans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–1035

    CAS  PubMed  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    CAS  PubMed  Google Scholar 

  • Bordet C, Perkins HR (1970) Iodinated vancomycin and mucopeptide biosynthesis by cell-free preparations from Micrococcus lysodeikticus. Biochem J 119:877–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD, Madigan MT, Martinko JM, Parker J (2000) Biology of Microorganisms. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Buche A, Mendez C, Salas JA (1997) Interaction between ATP, oleandomycin and the OleB ATP-binding cassette transporter of Streptomyces antibioticus involved in oleandomycin secretion. Biochem J 321:139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock WO, Fernandex JM, Short JM (1987) Xl1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5:376–379

    CAS  Google Scholar 

  • Chang G, Roth CB (2001) Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793–1800

    CAS  PubMed  Google Scholar 

  • Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347

    PubMed  Google Scholar 

  • Chiu HT, Hubbard BK, Shah AN, Eide J, Fredenburg RA, Walsh CT, Khosla C (2001) Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc Natl Acad Sci USA 98:8548–8553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davanloo P, Rosenberg AH, Dunn JJ, Studier FW (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 81:2035–2039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    CAS  PubMed  Google Scholar 

  • Doerrler WT, Raetz CR (2002) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277:36697–36705

    CAS  PubMed  Google Scholar 

  • Donadio S, Sosio M, Stegmann E, Weber T, Wohlleben W (2005) Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Mol Genet Genomics 274:40–50

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    CAS  PubMed  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwitch, UK

    Google Scholar 

  • Kieser T, Bibb JM, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics. John Innes Foundation, Norwich, UK

    Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    CAS  PubMed  Google Scholar 

  • Li TL, Huang F, Haydock SF, Mironenko T, Leadlay PF, Spencer JB (2004) Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 11:107–119

    CAS  PubMed  Google Scholar 

  • Mendez C, Salas JA (1998) ABC transporters in antibiotic-producing actinomycetes. FEMS Microbiol Lett 158:1–8

    CAS  PubMed  Google Scholar 

  • Mitaku S, Hirokawa T (1999) Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length. Protein Eng 12:953–957

    CAS  PubMed  Google Scholar 

  • Mitaku S, Hirokawa T, Tsuji T (2002) Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces. Bioinformatics 18:608–616

    CAS  PubMed  Google Scholar 

  • Nadkarni SR, Patel MV, Chatterjee S, Vijayakumar EK, Desikan KR, Blumbach J, Ganguli BN, Limbert M (1994) Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. Taxonomy, production, isolation and biological activity. J Antibiot (Tokyo) 47:334–341

    CAS  Google Scholar 

  • Oberthur M, Leimkuhler C, Kruger RG, Lu W, Walsh CT, Kahne D (2005) A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases. J Am Chem Soc 127:10747–10752

    PubMed  Google Scholar 

  • Pearson LA, Hisbergues M, Borner T, Dittmann E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–6378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelzer S, Reichert W, Huppert M, Heckmann D, Wohlleben W (1997) Cloning and analysis of a peptide synthetase gene of the balhimycin producer Amycolatopsis mediterranei DSM5908 and development of a gene disruption/replacement system. J Biotechnol 56:115–128

    CAS  PubMed  Google Scholar 

  • Pelzer S, Süßmuth RD, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in the producing organism Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peschel A, Götz F (1996) Analysis of the Staphylococcus epidermidis genes epiF, -E, and -G involved in epidermin immunity. J Bacteriol 178:531–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pootoolal J, Thomas MG, Marshall CG, Neu JM, Hubbard BK, Walsh CT, Wright GD (2002) Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci USA 99:8962–8967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puk O, Huber P, Bischoff D, Recktenwald J, Jung G, Süßsmuth RD, van Pee KH, Wohlleben W, Pelzer S (2002) Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol 9:225–235

    CAS  PubMed  Google Scholar 

  • Recktenwald J, Shawky R, Puk O, Pfennig F, Keller U, Wohlleben W, Pelzer S (2002) Nonribosomal biosynthesis of vancomycin-type antibiotics: a heptapeptide backbone and eight peptide synthetase modules. Microbiology 148:1105–1118

    CAS  PubMed  Google Scholar 

  • Rodriguez AM, Olano C, Vilches C, Mendez C, Salas JA (1993) Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol Microbiol 8:571–582

    CAS  PubMed  Google Scholar 

  • Sambrook J, MacCallum P, Russel D (2001) Molecular cloning: a laboratory manual. Coldspring Harbor Laboratory Press, Coldspring Harbor, NY

    Google Scholar 

  • Saurin W, Dassa E (1994) Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications. Protein Sci 3:325–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shawky RM, Wietzorreck A, Puk O, Takano E, Wohlleben W (2007) Sequence completion of the balhimycin biosynthesis gene cluster and characetrization of Bbr, StrR-Like pathway-specific regulator. J Mol Microbiol Biotechnol 13:76–88

    CAS  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Sosio M, Stinchi S, Beltrametti F, Lazzarini A, Donadio S (2003) The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by Nonomuraea species. Chem Biol 10:541–549

    CAS  PubMed  Google Scholar 

  • Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102

    CAS  PubMed  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    CAS  PubMed  Google Scholar 

  • Tomasz A (1994) Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N Engl J Med 330:1247–1251

    CAS  PubMed  Google Scholar 

  • van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen AJ, Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci USA 93:10668–10672

    PubMed  PubMed Central  Google Scholar 

  • van Wageningen AM, Kirkpatrick PN, Williams DH, Harris BR, Kershaw JK, Lennard NJ, Jones M, Jones SJ, Solenberg PJ (1998) Sequencing and analysis of genes involved in the biosynthesis of a vancomycin group antibiotic. Chem Biol 5:155–162

    PubMed  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woebking B, Reuter G, Shilling RA, Velamakanni S, Shahi S, Venter H, Balakrishnan L, van Veen HW (2005) Drug-lipid A interactions on the Escherichia coli ABC transporter MsbA. J Bacteriol 187:6363–6369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright GD, Molinas C, Arthur M, Courvalin P, Walsh CT (1992) Characterization of vanY, a DD-carboxypeptidase from vancomycin-resistant Enterococcus faecium BM4147. Antimicrob Agents Chemother 36:1514–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Landesstiftung Baden-Württemberg (Resistenz Kompetenz-Netzwerk) and the EU (COMBIG-TOP, LSHG-CT-2003-503491) to WW. We would like to thank Dr. L. Vértesy and Prof. G. Seibert (Aventis, Frankfurt) for the gift of balhimycin and Dr. S. Pelzer (Combinature Biopharm, Berlin) for providing the expression vector (pSETermEp*) and Diane Butz and Roderich D. Suessmuth (Organic chemistry, TU Berlin) for analysing intra-cellularly accumulated balhimycin concentration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Stegmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menges, R., Muth, G., Wohlleben, W. et al. The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin. Appl Microbiol Biotechnol 77, 125–134 (2007). https://doi.org/10.1007/s00253-007-1139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1139-x

Keywords