Abstract
Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359T and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.
Similar content being viewed by others
References
Abo-Hashesh M, Ghosh D, Tourigny A, Taous A, Hallenbeck PC (2011) Single stage photofermentative hydrogen production from glucose: an attractive alternative to two stage photofermentation or co-culture approaches. Int J Hydrog Energy 36:13889–13895. doi:10.1016/j.ijhydene.2011.02.122
Abo-Hashesh M, Desaunay N, Hallenbeck PC (2013) High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91. Bioresour Technol 128:513–517. doi:10.1016/j.biortech.2012.10.091
Adessi A, De Philippis R (2014) Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrog Energy 39:3127–3141. doi:10.1016/j.ijhydene.2013.12.084
Adessi A, McKinlay JB, Harwood CS, De Philippis R (2012) A Rhodopseudomonas palustris nifA* mutant produces H2 from NH4 +-containing vegetable wastes. Int J Hydrog Energy 37:15893–15900. doi:10.1016/j.ijhydene.2012.08.009
APHA (1992) Standard methods for the examination of water and wastewater, 18th edn. APHA, AWWA and WEF, Washington DC
Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T, Miyake J, Tomiyama M, Kohno H (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrog Energy 31:1509–1513. doi:10.1016/j.ijhydene.2006.06.017
Basile MA, Carfagna C, Cerruti P, Gomez d’Ayala G, Fontana A, Gambacorta A, Malinconico M, Dipasquale L (2012) Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties. RSC Adv 2:3611–3614. doi:10.1039/C2RA01025A
Bianchi L, Mannelli F, Viti C, Adessi A, De Philippis R (2010) Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy). Int J Hydrog Energy 35:12216–12223. doi:10.1016/j.ijhydene.2010.08.038
Burris RH (1991) Nitrogenases. J Biol Chem 266:9339–9342
Carlozzi P, Buccioni A, Minieri S, Pushparaj B, Piccardi R, Ena A, Pintucci C (2010) Production of bio-fuels (hydrogen and lipids) through a photofermentation process. Bioresour Technol 101:3115–3120. doi:10.1016/j.biortech.2009.12.049
Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two stage dark and photo fermentation processes. Int J Hydrog Energy 33:4755–4762. doi:10.1016/j.ijhydene.2008.06.055
d’Ippolito G, Dipasquale L, Vella FM, Romano I, Gambacorta A, Cutignano A, Fontana A (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 35:2290–2295. doi:10.1016/j.ijhydene.2009.12.044
d’Ippolito G, Dipasquale L, Fontana A (2014) Recycling of carbon dioxide and acetate as lactic acid by the hydrogen-producing bacterium Thermotoga neapolitana. ChemSusChem 7:2678–2683. doi:10.1002/cssc.201402155
Dipasquale L, d’Ippolito G, Gallo C, Vella FM, Gambacorta A, Picariello G, Fontana A (2012) Hydrogen production by the thermophilic eubacterium Thermotoga neapolitana from storage polysaccharides of the CO2-fixing diatom Thalassiosira weissflogii. Int J Hydrog Energy 37:12250–12257. doi:10.1016/j.ijhydene.2012.05.160
Dipasquale L, d’Ippolito G, Fontana A (2014) Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: an unexpected deviation from the dark fermentation model. Int J Hydrog Energy 39:4857–4862. doi:10.1016/j.ijhydene.2013.12.183
Eriksen NT, Nielsen TM, Iversen N (2008) Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol Lett 30:103–109. doi:10.1007/s10529-007-9520-5
Foglia D, Wukovits W, Friedl A, de Vrije T, Claassen PAM (2011) Fermentative hydrogen production: influence of application of mesophilic and thermophilic bacteria on mass and energy balances. Chem Eng Trans 25:815–820. doi:10.3303/CET1125136
Ghosh D, Sobro IF, Hallenbeck PC (2012) Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresour Technol 123:199–206. doi:10.1016/j.biortech.2012.07.061
Guédon E, Martin-Verstraete I (2006) Cysteine metabolism and its regulation in bacteria. In: Wendisch VF (ed) Amino acid biosynthesis. Springer, Berlin, pp 196–218
Hallenbeck PC (2014) Bioenergy from micro-organisms: an overview. In: Zannoni D, De Philippis R (eds) Microbial BioEnergy: hydrogen production. Springer, Dordrecht, pp 3–21
Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9. doi:10.1016/j.biortech.2012.01.103
Igeño MI, González del Moral C, Castillo F, Caballero FJ (1995) Halotolerance of the phototrophic bacterium Rhodobacter capsulatus E1F1 is dependent on the nitrogen source. Appl Environ Microbiol 61:2970–2975
Kars G, Gündüz U, Yücel M, Türker L, Eroğlu I (2006) Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron. Int J Hydrog Energy 31:1536–1544. doi:10.1016/j.ijhydene.2006.06.021
Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K (2001) H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 91:277–282. doi:10.1016/S1389-1723(01)80134-1
Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568. doi:10.1016/j.biortech.2011.04.004
Kim MS, Baek JS, Yun YS, Sim SJ, Park S, Kim SC (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrog Energy 31:812–816. doi:10.1016/j.ijhydene.2005.06.009
Kim MS, Kim DH, Cha J, Lee JK (2012) Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131. Bioresour Technol 116:179–183. doi:10.1016/j.biortech.2012.04.0111
Koku H, Eroğlu I, Gündüz U, Yücel M, Türker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 28:381–388. doi:10.1016/S0360-3199(02)00080-0
Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271. doi:10.1016/j.tibtech.2010.01.007
Lo YC, Chen SD, Chen CY, Huang TI, Lin CY, Chang JS (2008) Combining enzymatic hydrolysis and dark–photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrog Energy 33:5224–5233. doi:10.1016/j.ijhydene.2008.05.014
Miyake J, Kawamura S (1987) Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. Int J Hydrog Energy 3:147–149. doi:10.1016/0360-3199(87)90146-7
Miyake J, Mao XY, Kawamura S (1984) Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacteria and Clostridium butyricum. J Ferment Technol 62:531–535
Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042. doi:10.1002/btpr.201doi
Nguyen TAD, Han SJ, Kim JP, Kim MS, Sim SJ (2010) Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101:S38–S41. doi:10.1016/j.biortech.2009.03.041
Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrog Energy 37:10590–10603. doi:10.1016/j.ijhydene.2012.04.045
Redwood MD, Paterson-Beedle M, Macaskie LE (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185. doi:10.1007/s11157-008-9144-9
Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11:115. doi:10.1186/1475-2859-11-115
Show KY, Lee DJ, Tay JH, Lin CY, Chang JS (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrog Energy 37:15616–15631. doi:10.1016/j.ijhydene.2012.04.109
Vincenzini M, Marchini A, Ena A, De Philippis R (1997) H2 and poly-β-hydroxybutyrate, two alternative chemicals from purple non sulfur bacteria. Biotechnol Lett 19:759–762. doi:10.1023/A:1018336209252
Woodward J, Orr M, Cordray K, Greenbaum E (2000) Biotechnology: enzymatic production of biohydrogen. Nature 405:1014–1015. doi:10.1038/35016633
Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenerg 22:389–395. doi:10.1016/S0961-9534(02)00014-4
Acknowledgments
The authors gratefully acknowledge the Italian Ministry of the Environment (MATTM; project PIRODE), MIUR (PON01_02740 “Sfruttamento Integrato di Biomasse Algali in Filiera Energetica di Qualità - SIBAFEQ”, Programma Operativo Nazionale - Ricerca e Competitività 2007–2013), and CNR (Italian National Research Centre) (EFOR project), Ente Cassa di Risparmio di Firenze (Project HYDROLAB2). RDP would also like to mention the contribution given to his activities by the participation in the IEA-HIA (International Energy Agency-Hydrogen Implementation Agreement), Annex 21 “Bioinspired and biological hydrogen”.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding authors
Additional information
L. Dipasquale and A. Adessi equally contributed to this work as first authors.
Rights and permissions
About this article
Cite this article
Dipasquale, L., Adessi, A., d’Ippolito, G. et al. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields. Appl Microbiol Biotechnol 99, 1001–1010 (2015). https://doi.org/10.1007/s00253-014-6231-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-014-6231-4