Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Von Fuzzy-Sets zu Computing-with-Words

  • HAUPTBEITRAG
  • VON FUZZY-SETS ZU COMPUTING-WITH-WORDS
  • Published:
Informatik-Spektrum Aims and scope

Zusammenfassung

Dieser Artikel bietet einen Überblick über die Entwicklung und Zusammenhänge der einzelnen Elemente der Fuzzy-Logik, wovon Fuzzy-Set-Theorie die Grundlage bildet. Die Grundproblematik besteht in der Handhabung von linguistischen Informationen, die häufig durch Ungenauigkeit gekennzeichnet sind. Die verschiedenen technischen Anwendungen von Fuzzy-Logik bieten eine Möglichkeit, intelligentere Computersysteme zu konstruieren, die mit unpräzisen Informationen umgehen können. Solche Systeme sind Indizien für die Entstehung einer neuen Ära des Cognitive-Computing, die in diesem Artikel ebenfalls zur Sprache kommt. Für das bessere Verständnis wird der Artikel mit einem Beispiel aus der Meteorologie (d. h. Schnee in Adelboden) begleitet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Badredine A (2005) Fuzzy decision making in politics: a linguistic fuzzy set approach (LFSA). Pol Anal 13(1):23–56

    Article  Google Scholar 

  2. Bar-Cohen Y (2006) Biomimetics – using nature to inspire human innovation. Bioinspiration Biomimetics 1(1):1–12

    Article  Google Scholar 

  3. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Sci Am 29–37

  4. Dernoncourt F (2011) Introduction to fuzzy logic. MIT

  5. Dubois D, Prade H (1998) An introduction to fuzzy systems. Clin Chim Acta 270(1):3–29

    Article  Google Scholar 

  6. Froese N. Aristoteles: Logik und Methodik in der Antike. Logische Grundprinzipien, der Syllogismus und antike Wissenschaftsphilosophie. http://www.antike-griechische.de/Aristoteles.pdf, letzter Zugriff: 15.09.2015

  7. Haun M (2014) Cognitive Computing. Steigerung des systemischen Intelligenzprofils. Springer, Berlin Heidelberg

    Google Scholar 

  8. Herrera F, Martinez L (2000) A 2-tuple fuzzy linguistic representation, model for computing with words. IEEE T Fuzzy Syst 8(6):746–752

    Article  MathSciNet  Google Scholar 

  9. Hobbs JR (1985) Granularity. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), Los Angeles, CA, pp 432–435

  10. Jafar OAM, Sivakumar R (2013) A Comparative Study of Hard and Fuzzy Data Clustering Algorithms with Cluster Validity Indices. In: Proceedings of International Conference on ,,Emerging Research in Computing, Information, Communication and Applications (ERCICA 2013)“, Elsevier Publications, pp 775–782

  11. Kaufmann M, Portmann E, Fathi M (2012) A concept of semantics extraction from web data by induction of fuzzy ontologies. In: International Workshop on Uncertainty Reasoning for the Semantic Web

  12. Kaufmann M, Portmann E (2015) Biomimetics in design-oriented information systems research. In: Donnellan B, Gleasure R, Helfert M, Kenneally J, Rothenberger M, Chiarini Tremblay M, Vandermeert D, Winter R (eds) At the Vanguard of Design Science: First Impressions and Early Finding from Ongoing Research Research-in-Progress Papers and Poster Presentations from the 10th International Conference, DESRIST, Dublin, Ireland, pp 53–60

  13. Klir GJ, Yuan B (1995) Fuzzy Sets and Fuzzy Logic – Theory and Applications. Prentice-Hall, New York

    MATH  Google Scholar 

  14. Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24(1):65–75

    Article  MATH  Google Scholar 

  15. Lawry J (2001) A methodology for computing with words. Int J Approx Reason 28(2):51–89

    Article  MATH  MathSciNet  Google Scholar 

  16. Loucks DP, van Beek E, Stedinger JR, Dijkman JPM, Viallers MT (2005) Water Resources Systems Planning and Management: An Introduction to Methods, Models and Application. UNESCO, Paris, pp 135–144

    Google Scholar 

  17. Mendel JM (2007) Computing with words and its relationships with fuzzistics. Inform Sciences 177(4):988–1006

    Article  MathSciNet  Google Scholar 

  18. Mendel JM, Zadeh LA, Trillas E, Yager R, Lawry J, Hagas H, Guadarrama S (2010) What computing with words means to me. IEEE Comput Intell Mag 20–26

  19. Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive maps research during the last decade. IEEE T Fuzzy Syst 21(1):66–79

    Article  Google Scholar 

  20. Pedrycz W (2010) The design of cognitive maps: a study in synergy of granular computing and evolutionary optimization. Expert Syst Appl 37(10):7288–7294

    Article  Google Scholar 

  21. Pedrycz W, Jastrzebska A, Homenda W (2015) Design of fuzzy cognitive maps for modeling time series. IEEE T Fuzzy Syst

  22. Portmann E, Kaufmann MA, Graf C (2012) A distributed, semiotic-inductive, and human-oriented approach to web-scale knowledge retrieval. In: Proceedings of the 2012 International Workshop on Web-scale Knowledge Representation, Retrieval and Reasoning, ACM, New York, pp 1–8

  23. Rappaport WJ (2003) What did you mean by that? Misunderstanding, negotiation, and syntactic semantics. Mind Mach 13:397–427

    Article  MathSciNet  Google Scholar 

  24. Reformat M, Ly C (2009) Ontological approach to development of computing with words based systems. Int J Approx Reason 50(1):72–91

    Article  Google Scholar 

  25. Siemens G (2005) Connectivism: a learning theory for the digital age. Int J Instr Tech Dist Learn 2(1):3–10

    Google Scholar 

  26. Spinas O. Zur Geschichte der Logik. https://www.math.uni-kiel.de/logik/de/arbeitsgruppe-logik/zur-geschichte-der-logik, letzter Zugriff: 1.6.2015

  27. Strahm T (1999) Logik in Informatik, Mathematik und Philosophie. Vortrag anlässlich der Veranstaltung Theodor-Kocher-Preis der Universität Bern 1998

  28. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189–208

    Article  Google Scholar 

  29. Wang Y (2006) Keynote speech: cognitive informatics – towards future generation computers that think and feel. In: Proceedings of the 5th IEEE International Conference on Cognitive Informatics (ICCI’06), Beijing, China, IEEE CS Press, pp 3–7

  30. Yager RR, Filev D (1998) Operations for granular computing: mixing words and numbers. In: Proceedings of the FUZZ-IEEE World Congress on Computational Intelligence, Anchorage, pp 123–128

  31. Yao YY (2000) Granular computing: basic issues and possible solutions. In: Proceedings of the 5th Conference on Information Sciences, Atlantic, NJ, USA, vol 1, pp 186–189

  32. Yao YY (2006) Three perspectives of granular computing. In: Proceedings of the International Forum on Theory of GrC from Rough Set Perspective. J Nanchang Inst Technol 25(2):16–21

  33. Ying M (2002) A formal model of computing with words. IEEE T Fuzzy Syst 10(5):640–652

    Article  Google Scholar 

  34. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  35. Zadeh LA(1975) The concept of a linguistic variable and its applications to approximate reasoning – I. Inform Sci 8:199–249

  36. Zadeh LA (1988) Fuzzy logic. IEEE Computer 21(4):83–93

    Article  Google Scholar 

  37. Zadeh LA (1996) Fuzzy logic = computing with words. IEEE T Fuzzy Syst 4(2):103–111

    Article  MathSciNet  Google Scholar 

  38. Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Set Syst 90:111–127

    Article  MATH  MathSciNet  Google Scholar 

  39. Zadeh LA (1998) Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Comput 2:23–25

    Article  Google Scholar 

  40. Zadeh LA (2001) From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. Ann NY Acad Sci 929(1):221–252

    Article  Google Scholar 

  41. Zadeh LA (2005) Toward a generalized constraint of uncertainty (GTU) – an outline. Inform Sciences 172:1–40

    Article  MATH  MathSciNet  Google Scholar 

  42. Zadeh LA (2008) Is there a need for fuzzy logic? Inform Sciences 178(13):2751–2779

    Article  MATH  MathSciNet  Google Scholar 

  43. Zadeh LA (2011) Computing with Words – Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing. Springer, Heidelberg

    Google Scholar 

  44. Zadeh LA (2015) Fuzzy logic – a personal perspective. Fuzzy Set Syst

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara D’Onofrio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Onofrio, S., Portmann, E. Von Fuzzy-Sets zu Computing-with-Words. Informatik Spektrum 38, 543–549 (2015). https://doi.org/10.1007/s00287-015-0920-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00287-015-0920-y