Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, we produced composites of high-density polyethylene (PE)/polypropylene (PP) filled with graphene by melt compounding. Comparing composites produced in three processing sequences, we explored whether the sequence improved the composites’ electrical conductivity. The (graphene/PE)/PP composite, prepared by simultaneous compounding, exhibited an electrical percolation threshold of 1.25 vol.%. In contrast, the (graphene/PP)/PE composite, prepared by blending the graphene with PP first and then blending the graphene/PP with PE, had a much lower electrical percolation threshold at less than 0.83 vol.%. At its percolation threshold, the (graphene/PP)/PE composite had a conductivity about two orders of magnitude higher than the (graphene/PE)/PP composite. We attribute this difference in conductivity to differences in the graphene distributions in the composites. In the (graphene/PE)/PP composite, the graphene sheets were selectively dispersed in the PE phase; in the (graphene/PP)/PE composite, some of the graphene was localized at the interface of the PE/PP blend. We also showed how the different processing sequences affected the composites’ measured rheological and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Terrones M, Martín O, Gonzalez M, Pozuelo J, Serrano B, Cabanelas JC, Vega-Diaz SM, Baselga J (2011) Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv Mater 23:5302–5310

    Article  CAS  Google Scholar 

  2. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  3. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  4. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  5. Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, thermal stability, and dynamic mechanical properties of atactic polypropylene/carbon nanotube composites. J Appl Polym Sci 98:1087–1091

    Article  CAS  Google Scholar 

  6. Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending Methods. Polymer 52:1837–1846

    Article  CAS  Google Scholar 

  7. Ling JQ, Zhai WT, Feng WW, Shen B, Zhang JF, Zheng WG (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5:2677–2684

    Article  CAS  Google Scholar 

  8. Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene—polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924

    Article  CAS  Google Scholar 

  9. Steurer P, Wissert R, Thomann R, Muelhauptv R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun 30:316–327

    Article  CAS  Google Scholar 

  10. Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A, Bousmina M (2013) Preparation and characterization of melt-blended graphene nanosheets–poly(vinylidene fluoride) nanocomposites with enhanced properties. J Appl Polym Sci 127:4697–4707

    Article  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  12. Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191

    Article  CAS  Google Scholar 

  13. Wang WP, Pan CY (2004) preparation and characterization of poly(methyl methacrylate)-intercalated graphite oxide/poly(methyl methacrylate) nanocomposite. Polym Eng Sci 44:2335–2339

    Article  CAS  Google Scholar 

  14. Kim H, Macosko CW (2009) Processing-property relationships of polycarbonate/graphene composites. Polymer 50:3797–3809

    Article  CAS  Google Scholar 

  15. Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327

    Article  CAS  Google Scholar 

  16. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    Article  CAS  Google Scholar 

  17. Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromol Chem Phys 209:2487–2493

    Article  CAS  Google Scholar 

  18. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    Article  CAS  Google Scholar 

  19. Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974

    Article  CAS  Google Scholar 

  20. Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F, Teyssie P (1995) Design of electrical composites: determining the role of the morphology on the electrical properties of carbon black filled polymer blends. Macromolecules 28:1559–1566

    Article  CAS  Google Scholar 

  21. Qi XY, Yan D, Jiang ZG, Cao YK, Yu ZZ, Yavari F, Koratkar N (2011) Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl Mater Interfaces 3:3130–3133

    Article  CAS  Google Scholar 

  22. Thongruang W, Spontak RJ, Balik CM (2002) Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer 43:3717–3725

    Article  CAS  Google Scholar 

  23. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  CAS  Google Scholar 

  24. Mao C, Zhu YT, Jiang W (2012) Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl Mater Interfaces 4:5281–5286

    Article  CAS  Google Scholar 

  25. Wegrzyn M, Juan S, Benedito A, Gimenez E (2013) The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. J Appl Polym Sci 130:2152–2158

    Article  CAS  Google Scholar 

  26. Linares A, Canalda JC, Cagiao ME, GarcIa-GutiErrez MC, Nogales A, Martin-Gullon I, Vera J, Ezquerra TA (2008) Broad-band electrical conductivity of high density polyethylene nanocomposites with carbon nanoadditives: multiwall carbon nanotubes and carbon nanofibers. Macromolecules 41:7090–7097

    Article  CAS  Google Scholar 

  27. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  28. Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation. Phys Rev B 43:3331–3336

    Article  CAS  Google Scholar 

  29. Zheng WG, Lu XH, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788

    Article  CAS  Google Scholar 

  30. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem. B 110:8535–8539

    Article  CAS  Google Scholar 

  31. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  32. Nagata K, Kimura Y, Takahashi K, Kinoshita T (2002) Localization of carbon black particles in polypropylene/polyethylene polymer blend and its electrical resistivity. Jpn J Polym Sci Technol 59:694–701

    CAS  Google Scholar 

  33. Grossiord N, Loos J, Koning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15:2349–2352

    Article  CAS  Google Scholar 

  34. Kelly B (1981) Physics of graphite. In: Englewood NJ (ed). Applied Science Publishers, London, pp 267–361

  35. Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  36. Dua JH, Zhao L, Zeng Y, Zhang LL, Lia F, Liu PF, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094–1100

    Article  Google Scholar 

  37. Goldel A, Marmur A, Kasaliwal GR, Potschke P, Heinrich G (2011) Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing. Macromolecules 44:6094–6102

    Article  CAS  Google Scholar 

  38. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271

    Article  CAS  Google Scholar 

  39. Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  40. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  41. Shen Y, Zhang TT, Yang JH, Zhang N, Huang T, Wang Y (2016) Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polym Compos. doi:10.1002/pc.23769

    Google Scholar 

  42. Yan D, Zhang HB, Jia Y, Hu J, Qi XY, Zhang Z, Yu ZZ (2012) Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Appl Mater Interfaces 4:4740–4745

    Article  CAS  Google Scholar 

  43. Guin JP, Chaudhari CV, Dubey KA, Bhardwaj YK, Varshney L (2015) Graphene reinforced radiation crosslinked polyvinyl alcohol/carboxymethyl cellulose nanocomposites for controlled drug release. Polym Compos. doi:10.1002/pc.23823

    Google Scholar 

  44. Bouhfid R, Arrakhiz FZ, Qaiss A (2016) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/acrylonitrile–butadiene–styrene blends. Polym Compos 37:998–1006

    Article  CAS  Google Scholar 

  45. Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34:8084–8093

    Article  CAS  Google Scholar 

  46. Zhu YT, Cardinaels R, Mewis J, Moldenaers P (2009) Rheological properties of PDMS/clay nanocomposites and their sensitivity to microstructure. Rheol Acta 48:1049–1058

    Article  CAS  Google Scholar 

  47. Zhang QH, Fang F, Zhao X, Li YZ, Zhu MF, Chen DJ (2008) Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. J Phys Chem B 112:12606–12611

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 51221002 and 21174014). We also thank the Instrument and Research Technology Center at Nagoya Institute of Technology for AFM, TEM, and FE-SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, C., Nagata, K. & Yan, S. Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene. Polym. Bull. 74, 1237–1252 (2017). https://doi.org/10.1007/s00289-016-1774-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1774-4

Keywords