Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

In this paper, we discuss various concepts of robustness for uncertain multi-objective optimization problems. We extend the concepts of flimsily, highly, and lightly robust efficiency and we collect different versions of minmax robust efficiency and concepts based on set order relations from the literature. Altogether, we compare and analyze ten different concepts and point out their relations to each other. Furthermore, we present reduction results for the class of objective-wise uncertain multi-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Avigad G, Branke J (2008) Embedded evolutionary multi-objective optimization for worst case robustness. In: Keijzer M (ed) Proceedings of the 10th annual conference on genetic and evolutionary computation

  • Barrico C, Antunes C (2006) Robustness analysis in multi-objective optimization using a degree of robustness concept. In: IEEE congress on evolutionary computation. CEC 2006, pp 1887–1892. IEEE Computer Society

  • Ben-Tal A, Bertsimas D, Brown DB (2010) A soft robust model for optimization under ambiguity. Oper Res 58(4):1220–1234

    Article  Google Scholar 

  • Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton and Oxford

    Book  Google Scholar 

  • Ben-Tal A, Goryashko A, Guslitzer E, Nemirovski A (2003) Adjustable robust solutions of uncertain linear programs. Math Program A 99:351–376

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25:1–13

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program A 88:411–424

    Article  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  Google Scholar 

  • Birge J, Louveaux F (2011) Introduction to stochastic programming, 2nd edn., Springer series in operations research and financial engineeringSpringer, New York

    Book  Google Scholar 

  • Bokrantz R, Fredriksson A (2013) On solutions to robust multiobjective optimization problems that are optmal under convex scalarization. arXiv preprint arXiv:1308.4616

  • Branke J (1998) Creating robust solutions by means of evolutionary algorithms. In: Eiben E, Bäck T, Schenauer M, Schwefel HP (eds) Parallel problem solving from nature-PPSNV, vol 1498. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 119–128

  • Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D (2012) Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol 57(3):591

    Article  Google Scholar 

  • Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evol Comput 14(4):463–494

    Article  Google Scholar 

  • Doolittle EK, Kerivin HLM, Wiecek MM (2012) A robust multiobjective optimization problem with application to internet routing. Department of Mathematical Sciences, Clemson University. Technical report

  • Ehrgott M (2005) Multicriteria optimization. Springer, Berlin, Heidelberg

    Google Scholar 

  • Ehrgott M, Figueira JR, Greco S (eds) (2010) Trends in multiple criteria decision analysis, vol 142. International series in operations research & management. Springer, New York

  • Ehrgott M, Ide J, Schöbel A (2014) Minmax robustness for multi-objective optimization problems. Eur J Oper Res 239:17–31. doi:10.1016/j.ejor.2014.03.013

    Article  Google Scholar 

  • Erera A, Morales J, Savelsbergh M (2009) Robust optimization for empty repositioning problems. Oper Res 57(2):468–483

    Article  Google Scholar 

  • Fischetti M, Monaci M (2009) Light robustness. In: Ahuja RK, Möhring R, Zaroliagis C (eds) Robust and online large-scale optimization. Lecture note on computer science, vol 5868. Springer, pp 61–84

  • Fliege J, Werner R (2013) Robust multiobjective optimization & applications in portfolio optimization. Eur J Oper Res. doi:10.1016/j.ejor.2013.10.028

  • Goerigk M, Schöbel A (2014) Recovery-to-optimality: a new two-stage approach to robustness with an application to aperiodic timetabling. Comput Oper Res 52:1–15

    Article  Google Scholar 

  • Goerigk M, Schöbel A (2015) Algorithm engineering in robust optimization. In: Kliemann L, Sanders P (eds) Algorithm engineering. arXiv:1505.04901. Final volume for DFG Priority Program 1307

  • Gunawan S, Azarm S (2005) Multi-objective robust optimization using a sensitivity region concept. Struct Multidiscip Optim 29(1):50–60. doi:10.1007/s00158-004-0450-8

    Article  Google Scholar 

  • Hites R, De Smet Y, Risse N, Salazar-Neumann M, Vincke P (2006) About the applicability of MCDA to some robustness problems. Eur J Oper Res 174:322–332

    Article  Google Scholar 

  • Iancu D, Trichakis N (2014) Pareto efficiency in robust optimization. Manag Sci 60:130–147

    Article  Google Scholar 

  • Ide J (2014) Concepts of robustness for uncertain multi-objective optimization. Ph.D. thesis, Universität Göttingen

  • Ide J, Köbis E (2014) Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math Methods Oper Res 80:99–127

    Article  Google Scholar 

  • Ide J, Köbis E, Kuroiwa D, Schöbel A, Tammer C (2014) The relationship between multi-objective robustness concepts and set valued optimization. Fixed Point Theory Appl 2014(83). doi:10.1186/1687-1812-2014-83. http://www.fixedpointtheoryandapplications.com/content/2014/1/83

  • Ide J, Tiedemann M, Westphal S, Haiduk F (2015) An application of deterministic and robust optimization in the wood cutting industry. 4OR 13:35–57

    Article  Google Scholar 

  • Khan A, Tammer C, Zalinescu C (2014) Set-valued optimization. An introduction with applications. Springer

  • Klamroth K, Köbis E, Schöbel A, Tammer C (2013) A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals. Optimization 62(5):649–671

    Article  Google Scholar 

  • Kouvelis P, Yu G (1997) Robust discrete optimization and its applications. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Kuhn K, Raith A, Schmidt M, Schöbel A (2013) Bicriteria robust optimization. Technical report. 2013-09. Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Georg-August Universität Göttingen

  • Kuroiwa D, Lee GM (2012) On robust multiobjective optimization. Vietnam J Math 40(2&3):305–317

    Google Scholar 

  • Liebchen C, Lübbecke M, Möhring RH, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja RK, Möhring R, Zaroliagis C (eds) Robust and online large-scale optimization. Lecture note on computer science, vol 5868. Springer

  • Nakiboglu K (2014) On robust efficiency in the weber facility location problem. Master’s thesis, Georg August University Göttingen, Faculty of Mathematics

  • Perny P, Spanjaard O, Storme LX (2006) A decision-theoretic approach to robust optimization. Ann Oper Res 147:317–341

    Article  Google Scholar 

  • Sayin S, Kouvelis P (2005) The multiobjective discrete optimization problem: a weighted min-max two-stage optimization approach and a bicriteria algorithm. Manag Sci 51:1572–1581

    Article  Google Scholar 

  • Schöbel A (2014) Generalized light robustness and the trade-off between robustness and nominal quality. MMOR 80(2):161–191

    Google Scholar 

  • Soyster A (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154–1157

    Article  Google Scholar 

  • Yu H, Liu H (2013) Robust multiple objective game theory. J Optim Theory Appl 159(1):272–280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Ide.

Additional information

Supported by DFG RTG 1703 Resource Efficiency in Interorganizational Networks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ide, J., Schöbel, A. Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectrum 38, 235–271 (2016). https://doi.org/10.1007/s00291-015-0418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-015-0418-7

Keywords