Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Momentum Map Representation of Images

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper discusses the mathematical framework for designing methods of Large Deformation Diffeomorphic Matching (LDM) for image registration in computational anatomy. After reviewing the geometrical framework of LDM image registration methods, we prove a theorem showing that these methods may be designed by using the actions of diffeomorphisms on the image data structure to define their associated momentum representations as (cotangent-lift) momentum maps. To illustrate its use, the momentum map theorem is shown to recover the known algorithms for matching landmarks, scalar images, and vector fields. After briefly discussing the use of this approach for diffusion tensor (DT) images, we explain how to use momentum maps in the design of registration algorithms for more general data structures. For example, we extend our methods to determine the corresponding momentum map for registration using semidirect product groups, for the purpose of matching images at two different length scales. Finally, we discuss the use of momentum maps in the design of image registration algorithms when the image data is defined on manifolds instead of vector spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  • Alexander, D.C., Gee, J.C., Bajcsy, R.: Strategies for data reorientation during nonrigid warps of diffusion tensor images. In: Proceedings of MICCAI 1999. Lecture Notes in Computer Science, pp. 463–472. Springer, Berlin (1999)

    Google Scholar 

  • Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001)

    Article  Google Scholar 

  • Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008)

    Article  Google Scholar 

  • Beg, M.F.: Variational and computational methods for flows of diffeomorphisms in image matching and growth in computational anatomy. Ph.D. Thesis, John Hopkins University (2003)

  • Beg, M.F., Khan, A.: Symmetric data attachment terms for large deformation image registration. IEEE Trans. Med. Imaging 26, 9 (2007)

    Article  Google Scholar 

  • Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  • Cao, Y., Miller, M.I., Winslow, R.L., Younes, L.: Large deformation diffeomorphic metric mapping of vector fields. IEEE Trans. Med. Imaging 24(9), 1216–1230 (2005)

    Article  Google Scholar 

  • Cao, Y., Miller, M.I., Mori, S., Winslow, R.L., Younes, L.: Diffeomorphic matching of diffusion tensor images. In: Computer Vision and Pattern Recognition Workshop, 2006 Conference on, p. 67 (2006)

  • Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56, 587–600 (1998)

    MATH  MathSciNet  Google Scholar 

  • Glaunès, J.A.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. Thesis, Université Paris 13 (2005)

  • Grenander, U.: General Pattern Theory. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  • Hart, G.L., Zach, C., Niethammer, M.: An optimal control approach for deformable registration. http://www.cs.unc.edu/research/image/midag/pubs/papers/mmbia2009.pdf (2009)

  • Holm, D.D.: Geometric Mechanics Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008)

    MATH  Google Scholar 

  • Holm, D.D., Marsden, J.E.: Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation. In: The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 203–235. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  • Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Holm, D.D., Rathanather, J.T., Trouvé, A., Younes, L.: Soliton dynamics in computational anatomy. NeuroImage 23, 170–178 (2004)

    Article  Google Scholar 

  • Holm, D.D., Trouvé, A., Younes, L.: The Euler–Poincaré theory of metamorphosis. Q. Appl. Math. (2009). doi:10.1.1.158.744

    Google Scholar 

  • Joshi, S., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–1370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Texts in Applied Mathematics, vol. 17. Springer, Berlin (1999)

    MATH  Google Scholar 

  • Marsden, J.E., Scheurle, J.: The reduced Euler–Lagrange equations. Fields Inst. Commun. 1, 139–164 (1983)

    MathSciNet  Google Scholar 

  • Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. Int. J. Comput. Vis. 41, 61–84 (2001)

    Article  MATH  Google Scholar 

  • Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler–Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  • Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 244, 209–228 (2006)

    Article  Google Scholar 

  • Ortega, J.-P., Ratiu, T.S.: Momentum Maps and Hamiltonian Reduction. Progress in Mathematics, vol. 222. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  • Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Chiro, G.D.: Diffusion tensor MR imaging of the human brain. Radiology 201(3), 637–648 (1996)

    Google Scholar 

  • Risser, L., Vialard, F.-X., Wolz, R., Holm, D.D., Rueckert, D.: Simultaneous fine and coarse diffeomorphic registration: Application to the atrophy measurement in Alzheimer’s disease. In: Proceedings of MICCAI 2010 (Beijing). LNCS. Springer (2010, to appear)

  • Scollan, D.F., Holmes, A., Winslow, R.L., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. (Heart Circulatory Physiol.) 275, 2308–2318 (1998)

    Google Scholar 

  • Thompson, D.W.: On Growth and Form. Dover, New York (1992). Reprint of 1942 2nd edn. (1st edn. 1917)

    Google Scholar 

  • Trouvé, A.: An infinite dimensional group approach for physics based models in pattern recognition. Preprint, available on http://cis.jhu.edu (1995)

  • Trouvé, A.: Diffeomorphic groups and pattern matching in image analysis. Int. J. Comput. Vis. 28, 213–221 (1998)

    Article  Google Scholar 

  • Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Found. Comput. Math. 5, 173–198 (2005a)

    Article  MATH  MathSciNet  Google Scholar 

  • Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (2005b)

    Article  MATH  MathSciNet  Google Scholar 

  • Vialard, F.-X.: Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. Ph.D. Thesis, École Normale Supérieure de Cachan (2009)

  • Younes, L.: Shapes and Diffeomorphisms. Applied Mathematical Sciences, vol. 171. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  • Younes, L., Arrate, F., Miller, M.I.: Evolution equations in computational anatomy. NeuroImage 45, 40–50 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bruveris.

Additional information

Communicated by A. Bloch.

M. Bruveris and D.D. Holm partially supported by Royal Society of London, Wolfson Award.

F. Gay-Balmaz and T.S. Ratiu partially supported by a Swiss NSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruveris, M., Gay-Balmaz, F., Holm, D.D. et al. The Momentum Map Representation of Images. J Nonlinear Sci 21, 115–150 (2011). https://doi.org/10.1007/s00332-010-9079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-010-9079-5

Keywords

Mathematics Subject Classification (2000)