Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study an explicit correspondence between the integrable modified KdV hierarchy and its dual integrable modified Camassa–Holm hierarchy. A Liouville transformation between the isospectral problems of the two hierarchies also relates their respective recursion operators and serves to establish the Liouville correspondence between their flows and Hamiltonian conservation laws. In addition, a novel transformation mapping the modified Camassa–Holm equation to the Camassa–Holm equation is found. Furthermore, it is shown that the Hamiltonian conservation laws in the negative direction of the modified Camassa–Holm hierarchy are both local in the field variables and homogeneous under rescaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beals, R., Sattinger, D.H., Szmigielski, J.: Acoustic scattering and the extended Korteweg de Vries hierarchy. Adv. Math. 140, 190–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154, 229–257 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bies, P.M., Gorka, P., Reyes, E.: The dual modified Korteweg-de Vries–Fokas–Qiao equation: geometry and local analysis. J. Math. Phys. 53, 073710 (2012)

    Article  MathSciNet  Google Scholar 

  • Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Camassa, R., Holm, D.D., Hyman, J.: An new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  • Cao, C.W., Geng, X.G.: A nonconfocal generator of involute systems and three associated soliton hierarchies. J. Math. Phys. 32, 2323–2328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Chou, K.S., Qu, C.Z.: Integrable equations arising from motions of plane curves I. Phys. D 162, 9–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. Roy. Soc. Lond. Ser. A 457, 953–970 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  • Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa–Holm equation. Inverse Prob. 22, 2197–2207 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  • Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • El Dika, K., Molinet, L.: Stability of multipeakons. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 18, 1517–1532 (2009)

    Article  Google Scholar 

  • Fisher, M., Schiff, J.: The Camassa–Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259, 371–376 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A.S.: The Korteweg–de Vries equation and beyond. Acta Appl. Math. 39, 295–305 (1995a)

  • Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995b)

  • Fokas, A.S., Fuchssteiner, B.: Bäcklund transformations for hereditary symmetries. Nonlinear Anal. 5, 423–432 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Fokas, A.S., Olver, P.J., Rosenau, P.: A plethora of integrable bi-Hamiltonian equations. In: Algebraic Aspects of Integrable Systems, pp. 93–101. Progr. Nonlinear Differential Equations Appl., vol. 26, Birkhäuser Boston, Boston, MA, (1997)

  • Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4, 47–66 (1981/1982)

  • Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Hernandez-Heredero, R., Reyes, E.: Geometric integrability of the Camassa–Holm equation II. Int. Math. Res. Not. 2012, 3089–3125 (2012)

    MathSciNet  MATH  Google Scholar 

  • Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson, R.S.: On solutions of the Camassa–Holm equation. Proc. Roy. Soc. Lond. Ser. A 459, 1687–1708 (2003)

    Article  MATH  Google Scholar 

  • Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Lenells, J.: The correspondence between KdV and Camassa–Holm. Int. Math. Res. Not. 71, 3797–3811 (2004)

    Article  MathSciNet  Google Scholar 

  • Lenells, J.: Conservation laws of the Camassa–Holm equation. J. Phys. A: Math. Gen. 38, 869–880 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.A., Olver, P.J., Rosenau, P.: Non-analytic solutions of nonlinear wave models. In: Grosser, M., Höormann, G., Kunzinger, M., Oberguggenberger, M. (eds.) Nonlinear Theory of Generalized Functions, pp. 129–145. Research Notes in Mathematics, vol. 401, Chapman and Hall/CRC, New York (1999)

  • Liu, X.C., Liu, Y., Olver, P.J., Qu, C.Z.: Orbital stability of peakons for a generalization of the modified Camassa–Holm equation. Nonlinearity 22, 2297–2319 (2014)

    Article  MathSciNet  Google Scholar 

  • Liu, X.C., Liu, Y., Qu, C.Z.: Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math. 255, 1–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y., Olver, P.J., Qu, C.Z., Zhang, S.H.: On the blow-up of solutions to the integrable modified Camassa–Holm equation. Anal. Appl. 12, 355–368 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, H.P.: The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies. Commun. Pure Appl. Math. 56, 998–1015 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Milson, R.: Liouville transformation and exactly solvable Schrödinger equations. Int. J. Theor. Phys. 37, 1735–1752 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Newell, A.C.: Solitons in mathematics and physics. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48, SIAM, Philadelphia (1985)

  • Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)

    Google Scholar 

  • Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18, 1212–1215 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Olver, P.J.: Applications of Lie groups to differential equations. Graduate Text in Mathematics, vol. 107, 2nd edn. Springer, New York (1993)

  • Olver, P.J.: Nonlocal symmetries and ghosts. In: Shabat, A.B., et al. (eds.) New Trends in Integrability and Partial Solvability, pp. 199–215. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  • Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    Article  MathSciNet  Google Scholar 

  • Olver, P.J., Sanders, J., Wang, J.P.: Ghost symmetries. J. Nonlinear Math. Phys. 9(Suppl. 1), 164–172 (2002)

    Article  MathSciNet  Google Scholar 

  • Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

  • Qu, C.Z., Liu, X.C., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Reyes, E.: Geometric integrability of the Camassa–Holm equation. Lett. Math. Phys. 59, 117–131 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  • Rosenau, P.: On solitons, compactons, and Lagrange maps. Phys. Lett. A 211, 265–275 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Schiff, J.: Zero curvature formulations of dual hierarchies. J. Math. Phys. 37, 1928–1938 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Schiff, J.: The Camassa–Holm equation: a loop group approach. Phys. D 121, 24–43 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the referees for valuable comments and suggestions. J. Kang acknowledges the support and hospitality during her stay at the University of Minnesota, where this work was completed. The work of J. Kang is supported by NSF-China Grant 11471260 and the Foundation of Shannxi Education Committee-12JK0850. The work of X.C. Liu is supported by NSF-China Grant 11401471 and Ph.D. Programs Foundation of Ministry of Education of China-20136101120017 and the Grant under Shannxi Province 2013JQ1001. The work of P.J. Olver is partially supported by NSF Grant DMS-1108894. The work of C.Z. Qu is supported by the NSF-China Grant-11471174 and NSF of Ningbo Grant-2014A610018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Olver.

Additional information

Communicated by Darryl D. Holm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Liu, X., Olver, P.J. et al. Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy. J Nonlinear Sci 26, 141–170 (2016). https://doi.org/10.1007/s00332-015-9272-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-015-9272-7

Keywords

Mathematics Subject Classification