Abstract
We study an explicit correspondence between the integrable modified KdV hierarchy and its dual integrable modified Camassa–Holm hierarchy. A Liouville transformation between the isospectral problems of the two hierarchies also relates their respective recursion operators and serves to establish the Liouville correspondence between their flows and Hamiltonian conservation laws. In addition, a novel transformation mapping the modified Camassa–Holm equation to the Camassa–Holm equation is found. Furthermore, it is shown that the Hamiltonian conservation laws in the negative direction of the modified Camassa–Holm hierarchy are both local in the field variables and homogeneous under rescaling.
Similar content being viewed by others
References
Beals, R., Sattinger, D.H., Szmigielski, J.: Acoustic scattering and the extended Korteweg de Vries hierarchy. Adv. Math. 140, 190–206 (1998)
Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154, 229–257 (2000)
Bies, P.M., Gorka, P., Reyes, E.: The dual modified Korteweg-de Vries–Fokas–Qiao equation: geometry and local analysis. J. Math. Phys. 53, 073710 (2012)
Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
Camassa, R., Holm, D.D., Hyman, J.: An new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)
Cao, C.W., Geng, X.G.: A nonconfocal generator of involute systems and three associated soliton hierarchies. J. Math. Phys. 32, 2323–2328 (1991)
Chou, K.S., Qu, C.Z.: Integrable equations arising from motions of plane curves I. Phys. D 162, 9–33 (2002)
Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50, 321–362 (2000)
Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. Roy. Soc. Lond. Ser. A 457, 953–970 (2001)
Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Ann. Sc. Norm. Super. Pisa 26, 303–328 (1998)
Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa–Holm equation. Inverse Prob. 22, 2197–2207 (2006)
Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)
Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)
Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)
El Dika, K., Molinet, L.: Stability of multipeakons. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 18, 1517–1532 (2009)
Fisher, M., Schiff, J.: The Camassa–Holm equation: conserved quantities and the initial value problem. Phys. Lett. A 259, 371–376 (1999)
Fokas, A.S.: The Korteweg–de Vries equation and beyond. Acta Appl. Math. 39, 295–305 (1995a)
Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995b)
Fokas, A.S., Fuchssteiner, B.: Bäcklund transformations for hereditary symmetries. Nonlinear Anal. 5, 423–432 (1981)
Fokas, A.S., Olver, P.J., Rosenau, P.: A plethora of integrable bi-Hamiltonian equations. In: Algebraic Aspects of Integrable Systems, pp. 93–101. Progr. Nonlinear Differential Equations Appl., vol. 26, Birkhäuser Boston, Boston, MA, (1997)
Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)
Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D, 4, 47–66 (1981/1982)
Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)
Hernandez-Heredero, R., Reyes, E.: Geometric integrability of the Camassa–Holm equation II. Int. Math. Res. Not. 2012, 3089–3125 (2012)
Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)
Johnson, R.S.: On solutions of the Camassa–Holm equation. Proc. Roy. Soc. Lond. Ser. A 459, 1687–1708 (2003)
Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999)
Lenells, J.: The correspondence between KdV and Camassa–Holm. Int. Math. Res. Not. 71, 3797–3811 (2004)
Lenells, J.: Conservation laws of the Camassa–Holm equation. J. Phys. A: Math. Gen. 38, 869–880 (2005)
Li, Y.A., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)
Li, Y.A., Olver, P.J., Rosenau, P.: Non-analytic solutions of nonlinear wave models. In: Grosser, M., Höormann, G., Kunzinger, M., Oberguggenberger, M. (eds.) Nonlinear Theory of Generalized Functions, pp. 129–145. Research Notes in Mathematics, vol. 401, Chapman and Hall/CRC, New York (1999)
Liu, X.C., Liu, Y., Olver, P.J., Qu, C.Z.: Orbital stability of peakons for a generalization of the modified Camassa–Holm equation. Nonlinearity 22, 2297–2319 (2014)
Liu, X.C., Liu, Y., Qu, C.Z.: Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math. 255, 1–37 (2014)
Liu, Y., Olver, P.J., Qu, C.Z., Zhang, S.H.: On the blow-up of solutions to the integrable modified Camassa–Holm equation. Anal. Appl. 12, 355–368 (2014)
Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)
McKean, H.P.: The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies. Commun. Pure Appl. Math. 56, 998–1015 (2003)
Milson, R.: Liouville transformation and exactly solvable Schrödinger equations. Int. J. Theor. Phys. 37, 1735–1752 (1998)
Newell, A.C.: Solitons in mathematics and physics. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48, SIAM, Philadelphia (1985)
Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)
Olver, P.J.: Evolution equations possessing infinitely many symmetries. J. Math. Phys. 18, 1212–1215 (1977)
Olver, P.J.: Applications of Lie groups to differential equations. Graduate Text in Mathematics, vol. 107, 2nd edn. Springer, New York (1993)
Olver, P.J.: Nonlocal symmetries and ghosts. In: Shabat, A.B., et al. (eds.) New Trends in Integrability and Partial Solvability, pp. 199–215. Kluwer, Dordrecht (2004)
Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)
Olver, P.J., Sanders, J., Wang, J.P.: Ghost symmetries. J. Nonlinear Math. Phys. 9(Suppl. 1), 164–172 (2002)
Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)
Qu, C.Z., Liu, X.C., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)
Reyes, E.: Geometric integrability of the Camassa–Holm equation. Lett. Math. Phys. 59, 117–131 (2002)
Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Cambridge University Press, Cambridge (2002)
Rosenau, P.: On solitons, compactons, and Lagrange maps. Phys. Lett. A 211, 265–275 (1996)
Schiff, J.: Zero curvature formulations of dual hierarchies. J. Math. Phys. 37, 1928–1938 (1996)
Schiff, J.: The Camassa–Holm equation: a loop group approach. Phys. D 121, 24–43 (1998)
Acknowledgments
The authors thank the referees for valuable comments and suggestions. J. Kang acknowledges the support and hospitality during her stay at the University of Minnesota, where this work was completed. The work of J. Kang is supported by NSF-China Grant 11471260 and the Foundation of Shannxi Education Committee-12JK0850. The work of X.C. Liu is supported by NSF-China Grant 11401471 and Ph.D. Programs Foundation of Ministry of Education of China-20136101120017 and the Grant under Shannxi Province 2013JQ1001. The work of P.J. Olver is partially supported by NSF Grant DMS-1108894. The work of C.Z. Qu is supported by the NSF-China Grant-11471174 and NSF of Ningbo Grant-2014A610018.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Darryl D. Holm.
Rights and permissions
About this article
Cite this article
Kang, J., Liu, X., Olver, P.J. et al. Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy. J Nonlinear Sci 26, 141–170 (2016). https://doi.org/10.1007/s00332-015-9272-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-015-9272-7
Keywords
- Liouville transformation
- Modified Camassa–Holm hierarchy
- Modified KdV hierarchy
- Tri-Hamiltonian duality
- Hamiltonian conservation law
- Local conservation law
- Scaling homogeneity