Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Diffusion Forecasting Model with Basis Functions from QR-Decomposition

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The diffusion forecasting is a nonparametric approach that provably solves the Fokker–Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker–Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an \(N\times N\) diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden–Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: Lapack Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  • Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, T., Giannakis, D., Harlim, J.: Nonparametric forecasting of low-dimensional dynamical systems. Phys. Rev. E 91, 032915 (2015)

    Article  Google Scholar 

  • Berry, T., Harlim, J.: Forecasting turbulent modes with nonparametric diffusion models: learning from noisy data. Physica D 320, 57–76 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, T., Harlim, J.: Semiparametric modeling: correcting low-dimensional model error in parametric models. J. Comput. Phys. 308, 305–321 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, T., Harlim, J.: Variable bandwidth diffusion kernels. Appl. Comput. Harmon. Anal. 40, 68–96 (2016c)

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, T., Harlim, J.: Correcting biased observation model error in data assimilation. Mon. Weather Rev. 145(7), 2833–2853 (2017)

    Article  Google Scholar 

  • Bishop, C.H., Etherton, B., Majumdar, S.J.: Adaptive sampling with the ensemble transform Kalman filter part I: the theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)

    Article  Google Scholar 

  • Böttcher, F., Peinke, J., Kleinhans, D., Friedrich, R., Lind, P.G., Haase, M.: Reconstruction of complex dynamical systems affected by strong measurement noise. Phys. Rev. Lett. 97, 090603 (2006)

    Article  Google Scholar 

  • Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110(1–2), 43–50 (1997)

    Article  MATH  Google Scholar 

  • Chen, N., Majda, A.J., Giannakis, D.: Predicting the cloud patterns of the madden-julian oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett. 41(15), 5612–5619 (2014)

    Article  Google Scholar 

  • Coifman, R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.S.: A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

    Article  MATH  Google Scholar 

  • Ehrendorfer, M.: The Liouville equation and its potential usefulness for the prediction of forecast skill. Part I: theory. Mon. Weather Rev 122(4), 703–713 (1994)

    Article  Google Scholar 

  • Friedrich, R., Peinke, J.: Description of a turbulent cascade by a Fokker–Planck equation. Phys. Rev. Lett. 78, 863–866 (1997)

    Article  Google Scholar 

  • Giannakis, D., Tung, W.W., Majda, A.J.: Hierarchical structure of the madden-julian oscillation in infrared brightness temperature revealed through nonlinear Laplacian spectral analysis. In: 2012 Conference on Intelligent Data Understanding, pp. 55–62 (2012)

  • Harlim, J.: Data-driven computational methods: parameter and operator estimations. Cambridge University Press (in press)

  • Holland, E.P., Burrow, J.F., Dytham, C., Aegerter, J.N.: Modelling with uncertainty: introducing a probabilistic framework to predict animal population dynamics. Ecol. Model. 220(9–10), 1203–1217 (2009)

    Article  Google Scholar 

  • Hunt, B.R., Kostelich, E.J., Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D 230, 112–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Leith, C.E.: Theoretical skill of monte carlo forecasts. Mon. Weather Rev. 102(6), 409–418 (1974)

    Article  Google Scholar 

  • Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MATH  Google Scholar 

  • Lorenz, E.N.: Predictability—a problem partly solved. In: Proceedings on Predictability, Held at ECMWF on 4–8 september 1995, pp. 1– 18 (1996)

  • Majda, A.J.: Introduction to Turbulent Dynamical Systems in Complex Systems. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  • Nyström, E.J.: Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben. Acta Math. 54(1), 185–204 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Universitext. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  • Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Elemental: a new framework for distributed memory dense matrix computations. ACM Trans. Math. Softw 39(2), 13:1–13:24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Toth, Z., Kalnay, E.: Ensemble forecasting at ncep and the breeding method. Mon. Weather Rev. 125(12), 3297–3319 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The research of J.H. is partially supported by the Office of Naval Research Grants N00014-16-1-2888 and the National Science Foundation Grant DMS-1317919, DMS-1619661. We thank D.Giannakis for providing the NLSA modes for the experiments in Sect. 5. H.Y. is supported by the startup package of the Department of Mathematics, National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harlim.

Additional information

Communicated by Charles R. Doering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harlim, J., Yang, H. Diffusion Forecasting Model with Basis Functions from QR-Decomposition. J Nonlinear Sci 28, 847–872 (2018). https://doi.org/10.1007/s00332-017-9430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9430-1

Keywords

Mathematics Subject Classification