Abstract
As communication networks advance toward higher frequency bands (e.g. 5G), glass has become a promising candidate for low-loss materials in packaging and interconnect applications. While current techniques for through hole (through glass via, TGV) formation allow for drilling of >40 µm diameter holes, there are currently limited commercially viable options for smaller TGVs. Herein we report, using a single laser source and no post-processing, the formation of high aspect ratio TGVs in 10–20 µs for 50 and 100 µm thick glass. This is accomplished by exploiting a novel laser parameter space consisting of high power quasi-continuous wave (QCW) pulse trains of \(\sim\) 28 ps pulses with Gaussian beam profile. Crucially, this approach is compatible with high bandwidth beam steering technologies (galvanometers and acousto-optic deflectors (AODs)), allowing for simple scaling to an industrially viable throughput of tens of thousands of vias per second for high-density drill patterns. The TGVs have straight, smooth sidewalls, minimal splash, and high uniformity. Multi-physical simulations show that the drilling process is initiated by multi-photon absorption of laser energy and cascade ionization within an incubation period of several microseconds. After this incubation period, rapid material removal occurs via strong vaporization along with hydrodynamic ejection of molten glass.
Similar content being viewed by others
References
T. Sharma, A. Chehri, P. Fortier, Review of optical and wireless backhaul networks and emerging trends of next generation 5g and 6g technologies. Trans. Emerg. Telecommun. Technol. 32(3), 4155 (2021)
V. Sukumaran, T. Bandyopadhyay, Q. Chen, N. Kumbhat, F. Liu, R. Pucha, Y. Sato, M.Watanabe, K. Kitaoka, M. Ono, et al. Design, fabrication and characterization of low-cost glass interposers with fine-pitch through-package-vias. In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 583–588 (2011). IEEE
L. Cai, J. Wu, L. Lamberson, E. Streltsova, C. Daly, A. Zakharian, N.F. Borrelli, Glass for 5g applications. Appl. Phys. Lett. 119(8), 082901 (2021)
A.O. Watanabe, T.-H. Lin, M. Ali, Y. Wang, V. Smet, P.M. Raj, M.M. Tentzeris, R.R. Tummala, M. Swaminathan, Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias. IEEE Trans. Microw. Theory Tech. 68(12), 5082–5092 (2020)
V. Sukumaran, G. Kumar, K. Ramachandran, Y. Suzuki, K. Demir, Y. Sato, T. Seki, V. Sundaram, R.R. Tummala, Design, fabrication, and characterization of ultrathin 3-d glass interposers with through-package-vias at same pitch as tsvs in silicon. IEEE Trans. Comp. Pack. Manuf. Technol. 4(5), 786–795 (2014)
L.A. Hof, J. Abou Ziki, Micro-hole drilling on glass substrates—a review. Micromachines 8(2), 53 (2017)
H. Ogura, Y. Yoshida, Hole drilling of glass substrates with a \({\rm CO}_{2}\) laser. Jpn. J. Appl. Phys. 42(5R), 2881 (2003)
L. Brusberg, M. Queisser, C. Gentsch, H. Schröder, K.-D. Lang, Advances in a \({\rm CO}_{2}\)-laser drilling of glass substrates. Phys. Proc. 39, 548–555 (2012)
R. Nakamura, T. Katsuta, S. Fujikawa, T. Magara, T. Inagawa, Y. Aono, H. Tokura, Micro-laser drilling on glass substrates with pulsed co2 lasers. In: 2013 Japan Society for Precision Engineering, Spring Conference Proceedings, pp. 587–588 (2013). The Japan Society for Precision Engineering
Mitsubishi Electric Corporation: Mitsubishi Electric Develops Micro Glass-processing Technology Incorporating Pulsed a \({\rm CO}_{2}\) Laser. https://www.mitsubishielectric.com/news /2014/pdf/0213-c.pdf
R. Delmdahl, R. Paetzel, Laser drilling of high-density through glass vias (tgvs) for 2.5 days and 3 days packaging. J. Microelectron. Packag. Soc 21(2), 53–57 (2014)
M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, J. Fujimoto, H. Mizoguchi, Duv high power lasers processing for glass and cfrp. In: High-Power, High-Energy, and High-Intensity Laser Technology III, vol. 10238, p. 102381 (2017). International Society for Optics and Photonics
A. Salleo, T. Sands, F. Génin, Machining of transparent materials using an ir and uv nanosecond pulsed laser. Appl. Phys. A 71(6), 601–608 (2000)
D. Ashkenasi, T. Kaszemeikat, N. Mueller, A. Lemke, H.J. Eichler, Machining of glass and quartz using nanosecond and picosecond laser pulses. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, vol. 8243, p. 82430 (2012). International Society for Optics and Photonics
P. Gečys, J. Dudutis, G. Račiukaitis, Nanosecond laser processing of soda-lime glass. J. Laser Micro Nanoeng. 10(3) (2015)
S. Karimelahi, L. Abolghasemi, P.R. Herman, Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser. Appl. Phys. A 114(1), 91–111 (2014)
S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Zheng, H. Qiu, D. Low, Precision glass machining, drilling and profile cutting by short pulse lasers. Thin Solid Films 477(1–2), 216–221 (2005)
S. Ahn, J. Choi, J. Noh, S.-H. Cho, High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals. Opt. Lasers Eng. 101, 85–88 (2018)
K.L. Wlodarczyk, A. Brunton, P. Rumsby, D.P. Hand, Picosecond laser cutting and drilling of thin flex glass. Opt. Lasers Eng. 78, 64–74 (2016)
K. Mishchik, K. Gaudfrin, J. Lopez, Drilling of through holes in sapphire using femtosecond laser pulses. J. Laser Micro Nanoeng. 12(3) (2017)
M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J. Dudley, High aspect ratio nanochannel machining using single shot femtosecond bessel beams. Appl. Phys. Lett. 97(8), 081102 (2010)
R. Ostholt, N. Ambrosius, R.A. Krüger, High speed through glass via manufacturing technology for interposer. In: Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), pp. 1–3 (2014). IEEE
R.A. Krüger, M. Schulz-Ruhtenberg,, B. Rösener, O. Ostermann, R. Ostholt, N. Ambrosius. Lide: high aspect ratio glass processing technology for the mass production of microfluidic devices for biomedical applications. In: Microfluidics, BioMEMS, and Medical Microsystems XVII, vol. 10875, p. 1087506 (2019). International Society for Optics and Photonics
H.D. Boek, A.S. Gaab, G.A. Piech, A.B. Ruffin, D.A. Sternquist, Webb, M.B.: Methods for laser processing transparent workpieces using pulsed laser beam focal lines and vapor etching. Google Patents. US Patent 11,052,481 (2021)
R. Yoshizaki, Y. Ito, N. Miyamoto, A. Shibata, I. Nagasawa, K. Nagato, N. Sugita, Abrupt initiation of material removal by focusing continuous-wave fiber laser on glass. Appl. Phys. A 126(9), 1–7 (2020)
Y. Ito, R. Yoshizaki, N. Miyamoto, N. Sugita, Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament. Appl. Phys. Lett. 113(6), 061101 (2018)
Y. Ito, R. Yoshizaki,, A. Shibata, I. Nagasawa, K. Nagato, N. Sugita, Ultrafast and precision processing of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV, vol. 11267, p. 112670 (2020). International Society for Optics and Photonics
H. Matsumoto, J. Kleinert,, Z. Lin, Systems and methods for drilling vias in transparent materials. Google Patents. US20210245303A1 (2021)
J.W. Overbeck, Faster laser marker employing acousto-optic deflection. Google Patents. US5837962A (1998)
S.B. Barrett, M.A. Unrath, D.R. Cutler, Laser beam tertiary positioner apparatus and method. Google Patents. US6706999B1 (2004)
The CVI Melles Griot Technical Guide. (Chapter 2: Gaussian Beam Optics; equations 2.20, 2.21, 2.23) (2009). https://www.idex-hs.com/technical-guide-download/
A. Otto, M. Schmidt, Towards a universal numerical simulation model for laser material processing. Phys. Proc. 5, 35–46 (2010). https://doi.org/10.1016/j.phpro.2010.08.120 (Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 1)
A. Otto, H. Koch, R.G. Vazquez, Multiphysical simulation of laser material processing. Phys. Proc. 39, 843–852 (2012)
A. Otto, R.G. Vázquez, Fluid dynamical simulation of high speed micro welding. J. Laser Appl. 30(3), 032411 (2018). https://doi.org/10.2351/1.5040652
I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys. 101(4), 043506 (2007). https://doi.org/10.1063/1.2436925
I. Miyamoto, K. Cvecek, M. Schmidt, Nonlinear absorption dynamics simulated in internal modification of glass at 532 nm and 1064 nm by ultrashort laser pulses. Proc. CIRP 74, 344–348 (2018). https://doi.org/10.1016/j.procir.2018.08.129 (10th CIRP Conference on Photonic Technologies [LANE 2018])
M. Sun, U. Eppelt, W. Schulz, J. Zhu, Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates. Opt. Mater. Express 3(10), 1716–1726 (2013). https://doi.org/10.1364/OME.3.001716
L.B. Glebov, Optical absorption and ionization of silicate glasses. SPIE 4347, 343–358 (2001)
T.A. Laurence, J.D. Bude, N. Shen, T. Feldman, P.E. Miller, W.A. Steele, T. Suratwala, Metallic-like photoluminescence and absorption in fused silica surface flaws. Appl. Phys. Lett. 94(15), 151114 (2009). https://doi.org/10.1063/1.3119622
D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin Heidelberg, 2011)
S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’Man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Soviet J. Exp. Theor. Phys. 39, 375–377 (1974)
J.H. Simmons, What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites. J. Non Cryst. Sol. 239(1), 1–15 (1998). https://doi.org/10.1016/S0022-3093(98)00741-8
A. Otto, H. Koch, R.G. Vázquez, Z. Lin, B. Hainsey, Multiphysical simulation of ns-laser ablation of multi-material led-structures. Phys. Proc. 56, 1315–1324 (2014)
M. Buttazzoni, C. Zenz, A. Otto, R. Gómez Vázquez, G. Liedl, J.L. Arias, A numerical investigation of laser beam welding of stainless steel sheets with a gap. Appl. Sci. 11(6) (2021). https://doi.org/10.3390/app11062549
H. Matsumoto, Z. Lin, J. Kleinert, Ultrafast laser ablation of copper with \(\sim\)GHz bursts. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, vol. 10519, p. 1051902 (2018). International Society for Optics and Photonics
H. Matsumoto, Z. Lin, J.N. Schrauben, J. Kleinert, Ultrafast laser ablation of silicon with \(\sim\)GHz bursts. J. Laser Appl. 33(3), 032010 (2021). https://doi.org/10.2351/7.0000372
L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 186601 (2002). https://doi.org/10.1103/PhysRevLett.89.186601
R. Yoshizaki, Y. Ito, S. Yoshitake, C. Wei, A. Shibata, I. Nagasawa, K. Nagato, N. Sugita, Mechanism of material removal through transient and selective laser absorption into excited electrons in fused silica. J. Appl. Phys. 130(5), 053102 (2021). https://doi.org/10.1063/5.0049195
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Formation of TGV movie is available as a supplementary material. The movie was taken while processing 100 \(\upmu \hbox {m}\) thick glass. 100 ms dwell time was set at each drilling location to ensure no beam move occurs while gating the laser. Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 33044 KB)
Supplementary material 2 (avi 2114 KB)
Supplementary material 3 (avi 1562 KB)
Rights and permissions
About this article
Cite this article
Matsumoto, H., Lin, Z., Schrauben, J.N. et al. Rapid formation of high aspect ratio through holes in thin glass substrates using an engineered, QCW laser approach. Appl. Phys. A 128, 269 (2022). https://doi.org/10.1007/s00339-022-05404-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-022-05404-4