Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Rapid formation of high aspect ratio through holes in thin glass substrates using an engineered, QCW laser approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

As communication networks advance toward higher frequency bands (e.g. 5G), glass has become a promising candidate for low-loss materials in packaging and interconnect applications. While current techniques for through hole (through glass via, TGV) formation allow for drilling of >40 µm diameter holes, there are currently limited commercially viable options for smaller TGVs. Herein we report, using a single laser source and no post-processing, the formation of high aspect ratio TGVs in 10–20 µs for 50 and 100 µm thick glass. This is accomplished by exploiting a novel laser parameter space consisting of high power quasi-continuous wave (QCW) pulse trains of \(\sim\) 28 ps pulses with Gaussian beam profile. Crucially, this approach is compatible with high bandwidth beam steering technologies (galvanometers and acousto-optic deflectors (AODs)), allowing for simple scaling to an industrially viable throughput of tens of thousands of vias per second for high-density drill patterns. The TGVs have straight, smooth sidewalls, minimal splash, and high uniformity. Multi-physical simulations show that the drilling process is initiated by multi-photon absorption of laser energy and cascade ionization within an incubation period of several microseconds. After this incubation period, rapid material removal occurs via strong vaporization along with hydrodynamic ejection of molten glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Sharma, A. Chehri, P. Fortier, Review of optical and wireless backhaul networks and emerging trends of next generation 5g and 6g technologies. Trans. Emerg. Telecommun. Technol. 32(3), 4155 (2021)

    Google Scholar 

  2. V. Sukumaran, T. Bandyopadhyay, Q. Chen, N. Kumbhat, F. Liu, R. Pucha, Y. Sato, M.Watanabe, K. Kitaoka, M. Ono, et al. Design, fabrication and characterization of low-cost glass interposers with fine-pitch through-package-vias. In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 583–588 (2011). IEEE

  3. L. Cai, J. Wu, L. Lamberson, E. Streltsova, C. Daly, A. Zakharian, N.F. Borrelli, Glass for 5g applications. Appl. Phys. Lett. 119(8), 082901 (2021)

    Article  ADS  Google Scholar 

  4. A.O. Watanabe, T.-H. Lin, M. Ali, Y. Wang, V. Smet, P.M. Raj, M.M. Tentzeris, R.R. Tummala, M. Swaminathan, Ultrathin antenna-integrated glass-based millimeter-wave package with through-glass vias. IEEE Trans. Microw. Theory Tech. 68(12), 5082–5092 (2020)

    Google Scholar 

  5. V. Sukumaran, G. Kumar, K. Ramachandran, Y. Suzuki, K. Demir, Y. Sato, T. Seki, V. Sundaram, R.R. Tummala, Design, fabrication, and characterization of ultrathin 3-d glass interposers with through-package-vias at same pitch as tsvs in silicon. IEEE Trans. Comp. Pack. Manuf. Technol. 4(5), 786–795 (2014)

    Google Scholar 

  6. L.A. Hof, J. Abou Ziki, Micro-hole drilling on glass substrates—a review. Micromachines 8(2), 53 (2017)

    Article  Google Scholar 

  7. H. Ogura, Y. Yoshida, Hole drilling of glass substrates with a \({\rm CO}_{2}\) laser. Jpn. J. Appl. Phys. 42(5R), 2881 (2003)

    Article  ADS  Google Scholar 

  8. L. Brusberg, M. Queisser, C. Gentsch, H. Schröder, K.-D. Lang, Advances in a \({\rm CO}_{2}\)-laser drilling of glass substrates. Phys. Proc. 39, 548–555 (2012)

    Article  ADS  Google Scholar 

  9. R. Nakamura, T. Katsuta, S. Fujikawa, T. Magara, T. Inagawa, Y. Aono, H. Tokura, Micro-laser drilling on glass substrates with pulsed co2 lasers. In: 2013 Japan Society for Precision Engineering, Spring Conference Proceedings, pp. 587–588 (2013). The Japan Society for Precision Engineering

  10. Mitsubishi Electric Corporation: Mitsubishi Electric Develops Micro Glass-processing Technology Incorporating Pulsed a \({\rm CO}_{2}\) Laser. https://www.mitsubishielectric.com/news /2014/pdf/0213-c.pdf

  11. R. Delmdahl, R. Paetzel, Laser drilling of high-density through glass vias (tgvs) for 2.5 days and 3 days packaging. J. Microelectron. Packag. Soc 21(2), 53–57 (2014)

    Article  Google Scholar 

  12. M. Kobayashi, K. Kakizaki, H. Oizumi, T. Mimura, J. Fujimoto, H. Mizoguchi, Duv high power lasers processing for glass and cfrp. In: High-Power, High-Energy, and High-Intensity Laser Technology III, vol. 10238, p. 102381 (2017). International Society for Optics and Photonics

  13. A. Salleo, T. Sands, F. Génin, Machining of transparent materials using an ir and uv nanosecond pulsed laser. Appl. Phys. A 71(6), 601–608 (2000)

    Article  ADS  Google Scholar 

  14. D. Ashkenasi, T. Kaszemeikat, N. Mueller, A. Lemke, H.J. Eichler, Machining of glass and quartz using nanosecond and picosecond laser pulses. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII, vol. 8243, p. 82430 (2012). International Society for Optics and Photonics

  15. P. Gečys, J. Dudutis, G. Račiukaitis, Nanosecond laser processing of soda-lime glass. J. Laser Micro Nanoeng. 10(3) (2015)

  16. S. Karimelahi, L. Abolghasemi, P.R. Herman, Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser. Appl. Phys. A 114(1), 91–111 (2014)

    Article  ADS  Google Scholar 

  17. S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Zheng, H. Qiu, D. Low, Precision glass machining, drilling and profile cutting by short pulse lasers. Thin Solid Films 477(1–2), 216–221 (2005)

    Article  ADS  Google Scholar 

  18. S. Ahn, J. Choi, J. Noh, S.-H. Cho, High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals. Opt. Lasers Eng. 101, 85–88 (2018)

    Article  Google Scholar 

  19. K.L. Wlodarczyk, A. Brunton, P. Rumsby, D.P. Hand, Picosecond laser cutting and drilling of thin flex glass. Opt. Lasers Eng. 78, 64–74 (2016)

    Article  Google Scholar 

  20. K. Mishchik, K. Gaudfrin, J. Lopez, Drilling of through holes in sapphire using femtosecond laser pulses. J. Laser Micro Nanoeng. 12(3) (2017)

  21. M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. Salut, L. Furfaro, J. Dudley, High aspect ratio nanochannel machining using single shot femtosecond bessel beams. Appl. Phys. Lett. 97(8), 081102 (2010)

    Article  ADS  Google Scholar 

  22. R. Ostholt, N. Ambrosius, R.A. Krüger, High speed through glass via manufacturing technology for interposer. In: Proceedings of the 5th Electronics System-integration Technology Conference (ESTC), pp. 1–3 (2014). IEEE

  23. R.A. Krüger, M. Schulz-Ruhtenberg,, B. Rösener, O. Ostermann, R. Ostholt, N. Ambrosius. Lide: high aspect ratio glass processing technology for the mass production of microfluidic devices for biomedical applications. In: Microfluidics, BioMEMS, and Medical Microsystems XVII, vol. 10875, p. 1087506 (2019). International Society for Optics and Photonics

  24. H.D. Boek, A.S. Gaab, G.A. Piech, A.B. Ruffin, D.A. Sternquist, Webb, M.B.: Methods for laser processing transparent workpieces using pulsed laser beam focal lines and vapor etching. Google Patents. US Patent 11,052,481 (2021)

  25. R. Yoshizaki, Y. Ito, N. Miyamoto, A. Shibata, I. Nagasawa, K. Nagato, N. Sugita, Abrupt initiation of material removal by focusing continuous-wave fiber laser on glass. Appl. Phys. A 126(9), 1–7 (2020)

    Article  Google Scholar 

  26. Y. Ito, R. Yoshizaki, N. Miyamoto, N. Sugita, Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament. Appl. Phys. Lett. 113(6), 061101 (2018)

    Article  ADS  Google Scholar 

  27. Y. Ito, R. Yoshizaki,, A. Shibata, I. Nagasawa, K. Nagato, N. Sugita, Ultrafast and precision processing of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV, vol. 11267, p. 112670 (2020). International Society for Optics and Photonics

  28. H. Matsumoto, J. Kleinert,, Z. Lin, Systems and methods for drilling vias in transparent materials. Google Patents. US20210245303A1 (2021)

  29. J.W. Overbeck, Faster laser marker employing acousto-optic deflection. Google Patents. US5837962A (1998)

  30. S.B. Barrett, M.A. Unrath, D.R. Cutler, Laser beam tertiary positioner apparatus and method. Google Patents. US6706999B1 (2004)

  31. The CVI Melles Griot Technical Guide. (Chapter 2: Gaussian Beam Optics; equations 2.20, 2.21, 2.23) (2009). https://www.idex-hs.com/technical-guide-download/

  32. A. Otto, M. Schmidt, Towards a universal numerical simulation model for laser material processing. Phys. Proc. 5, 35–46 (2010). https://doi.org/10.1016/j.phpro.2010.08.120 (Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 1)

    Article  ADS  Google Scholar 

  33. A. Otto, H. Koch, R.G. Vazquez, Multiphysical simulation of laser material processing. Phys. Proc. 39, 843–852 (2012)

    Article  ADS  Google Scholar 

  34. A. Otto, R.G. Vázquez, Fluid dynamical simulation of high speed micro welding. J. Laser Appl. 30(3), 032411 (2018). https://doi.org/10.2351/1.5040652

    Article  ADS  Google Scholar 

  35. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, I.V. Hertel, Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys. 101(4), 043506 (2007). https://doi.org/10.1063/1.2436925

    Article  ADS  Google Scholar 

  36. I. Miyamoto, K. Cvecek, M. Schmidt, Nonlinear absorption dynamics simulated in internal modification of glass at 532 nm and 1064 nm by ultrashort laser pulses. Proc. CIRP 74, 344–348 (2018). https://doi.org/10.1016/j.procir.2018.08.129 (10th CIRP Conference on Photonic Technologies [LANE 2018])

    Article  Google Scholar 

  37. M. Sun, U. Eppelt, W. Schulz, J. Zhu, Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates. Opt. Mater. Express 3(10), 1716–1726 (2013). https://doi.org/10.1364/OME.3.001716

    Article  ADS  Google Scholar 

  38. L.B. Glebov, Optical absorption and ionization of silicate glasses. SPIE 4347, 343–358 (2001)

    ADS  Google Scholar 

  39. T.A. Laurence, J.D. Bude, N. Shen, T. Feldman, P.E. Miller, W.A. Steele, T. Suratwala, Metallic-like photoluminescence and absorption in fused silica surface flaws. Appl. Phys. Lett. 94(15), 151114 (2009). https://doi.org/10.1063/1.3119622

    Article  ADS  Google Scholar 

  40. D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin Heidelberg, 2011)

    Book  Google Scholar 

  41. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’Man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Soviet J. Exp. Theor. Phys. 39, 375–377 (1974)

    ADS  Google Scholar 

  42. J.H. Simmons, What is so exciting about non-linear viscous flow in glass, molecular dynamics simulations of brittle fracture and semiconductor-glass quantum composites. J. Non Cryst. Sol. 239(1), 1–15 (1998). https://doi.org/10.1016/S0022-3093(98)00741-8

    Article  ADS  Google Scholar 

  43. A. Otto, H. Koch, R.G. Vázquez, Z. Lin, B. Hainsey, Multiphysical simulation of ns-laser ablation of multi-material led-structures. Phys. Proc. 56, 1315–1324 (2014)

    Article  ADS  Google Scholar 

  44. M. Buttazzoni, C. Zenz, A. Otto, R. Gómez Vázquez, G. Liedl, J.L. Arias, A numerical investigation of laser beam welding of stainless steel sheets with a gap. Appl. Sci. 11(6) (2021). https://doi.org/10.3390/app11062549

  45. H. Matsumoto, Z. Lin, J. Kleinert, Ultrafast laser ablation of copper with \(\sim\)GHz bursts. In: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, vol. 10519, p. 1051902 (2018). International Society for Optics and Photonics

  46. H. Matsumoto, Z. Lin, J.N. Schrauben, J. Kleinert, Ultrafast laser ablation of silicon with \(\sim\)GHz bursts. J. Laser Appl. 33(3), 032010 (2021). https://doi.org/10.2351/7.0000372

    Article  ADS  Google Scholar 

  47. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 186601 (2002). https://doi.org/10.1103/PhysRevLett.89.186601

    Article  ADS  Google Scholar 

  48. R. Yoshizaki, Y. Ito, S. Yoshitake, C. Wei, A. Shibata, I. Nagasawa, K. Nagato, N. Sugita, Mechanism of material removal through transient and selective laser absorption into excited electrons in fused silica. J. Appl. Phys. 130(5), 053102 (2021). https://doi.org/10.1063/5.0049195

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Matsumoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Formation of TGV movie is available as a supplementary material. The movie was taken while processing 100 \(\upmu \hbox {m}\) thick glass. 100 ms dwell time was set at each drilling location to ensure no beam move occurs while gating the laser. Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 33044 KB)

Supplementary material 2 (avi 2114 KB)

Supplementary material 3 (avi 1562 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, H., Lin, Z., Schrauben, J.N. et al. Rapid formation of high aspect ratio through holes in thin glass substrates using an engineered, QCW laser approach. Appl. Phys. A 128, 269 (2022). https://doi.org/10.1007/s00339-022-05404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05404-4

Keywords