Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scaling electrical percolation networks based on renormalization group theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Many natural disordered systems such as percolation metal films may be approximated as fractals. Probing their properties can be difficult depending on the length scale involved. Often, characterizing the system at a convenient length scale and building models for extrapolating the measured data to other length scales is preferred. In such situations, a general algorithm for scaling the model network while preserving its statistical equivalence is required. Here, we provide an algorithm that draws inspiration from renormalization group theory for scaling disordered fractal networks. This algorithm includes three steps: expand, map, and reduce resolution, where the mapping is the only computationally expensive step. We describe a way to minimize the computational burden and accurately scale the model network. We experimentally validate the algorithm in a percolating electrical network formed by an ultra-thin gold film on a glass substrate. By measuring the resistance between many pairs of pads separated by a given length, we accurately predict the mean and standard deviation of the resistance distribution measured across pads separated by twice the original distance. The algorithm presented here is general and may be applied to any disordered fractal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V.K. Shante, S. Kirkpatrick, An introduction to percolation theory. Adv. Phys. 20(85), 325–357 (1971)

    Article  ADS  Google Scholar 

  2. S. Kirkpatrick, Percolation and conduction. Rev. Mod. Phys. 45(4), 574 (1973)

    Article  ADS  Google Scholar 

  3. J.W. Essam, Percolation theory. Rep. Prog. Phys. 43(7), 833 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 2018)

    Book  MATH  Google Scholar 

  5. B. Bollobás, B. Bollobás, O. Riordan, Percolation (Cambridge University Press, New York, 2006)

    Book  MATH  Google Scholar 

  6. R. Meester, R. Roy, Continuum Percolationvol, vol. 119 (Cambridge University Press, New York, 1996)

    Book  MATH  Google Scholar 

  7. M. Sahimi, Applications of Percolation Theory (CRC Press, London, 1994)

    Book  Google Scholar 

  8. W. Xu, Y. Jiao, Theoretical framework for percolation threshold, tortuosity and transport properties of porous materials containing 3d non-spherical pores. Int. J. Eng. Sci. 13(4), 31–46 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Berkowitz, I. Balberg, Percolation theory and its application to groundwater hydrology. Water Resour. Res. 29(4), 775–794 (1993)

    Article  ADS  Google Scholar 

  10. A.A. Saberi, Recent advances in percolation theory and its applications. Phys. Rep. 578, 1–32 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. J. Gao, S.V. Buldyrev, H.E. Stanley, X. Xu, S. Havlin, Percolation of a general network of networks. Phys. Rev. E88(6), 062816 (2013)

    ADS  Google Scholar 

  12. O. Riordan, L. Warnke, Explosive percolation is continuous. Science 333(6040), 322–324 (2011)

    Article  ADS  Google Scholar 

  13. N. Araújo, P. Grassberger, B. Kahng, K. Schrenk, R.M. Ziff, Recent advances and open challenges in percolation. Eur. Phys. J. Spec. Top. 223(11), 2307–2321 (2014)

    Article  Google Scholar 

  14. R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Explosive percolation transition is actually continuous. Phys. Rev. Lett. 105(25), 255701 (2010)

    Article  ADS  Google Scholar 

  15. F. Radicchi, Percolation in real interdependent networks. Nat. Phys. 11(7), 597–602 (2015)

    Article  Google Scholar 

  16. A.J. Marsden, D. Papageorgiou, C. Valles, A. Liscio, V. Palermo, M. Bissett, R. Young, I. Kinloch, Electrical percolation in graphene–polymer composites. 2D Mater. 5(3), 032003 (2018)

    Article  Google Scholar 

  17. W. Xu, Y. Zhang, J. Jiang, Z. Liu, Y. Jiao, Thermal conductivity and elastic modulus of 3d porous/fractured media considering percolation. Int. J. Eng. Sci. 161, 103456 (2021)

    Article  MATH  Google Scholar 

  18. W. Xu, Z. Zhu, Y. Jiang, Y. Jiao, Continuum percolation of congruent overlapping polyhedral particles: finite-size-scaling analysis and renormalization-group method. Phys. Rev. E 99(3), 032107 (2019)

    Article  ADS  Google Scholar 

  19. A. De Pádua, J.A. De Miranda-Neto, F. Moraes, Geometrical scaling in the Bethe lattice. Mod. Phys. Lett. B 08(14n15), 909–915 (1994). https://doi.org/10.1142/S0217984994000911

    Article  ADS  Google Scholar 

  20. P. Molnar, On geometrical scaling of Cayley trees and river networks. J. Hydrol. 322(1–4), 199–210 (2006)

    Article  ADS  Google Scholar 

  21. A. Young, R. Stinchcombe, A renormalization group theory for percolation problems. J. Phys. C Solid State Phys. 8(23), 535 (1975)

    Article  ADS  Google Scholar 

  22. A.B. Harris, T.C. Lubensky, W.K. Holcomb, C. Dasgupta, Renormalization-group approach to percolation problems. Phys. Rev. Lett. 35(6), 327 (1975)

    Article  ADS  Google Scholar 

  23. P.J. Reynolds, H. Stanley, W. Klein, A real-space renormalization group for site and bond percolation. J. Phys. C Solid State Phys. 10(8), 167 (1977)

    Article  ADS  Google Scholar 

  24. D. Stauffer, Scaling theory of percolation clusters. Phys. Rep. 54(1), 1–74 (1979)

    Article  ADS  Google Scholar 

  25. P.J. Reynolds, H.E. Stanley, W. Klein, Large-cell Monte Carlo renormalization group for percolation. Phys. Rev. B 21(3), 1223 (1980)

    Article  ADS  Google Scholar 

  26. M. Sahimi, B.D. Hughes, L. Scriven, H.T. Davis, Real-space renormalization and effective-medium approximation to the percolation conduction problem. Phys. Rev. B 28(1), 307 (1983)

    Article  ADS  Google Scholar 

  27. B. Derrida, L.D. Seze, Application of the phenomenological renormalization to percolation and lattice animals in dimension 2, in Finite-Size Scaling. Current Physics-Sources and Comments, vol. 2, ed. by J.L. Cardy (Elsevier, Amsterdam, 1988), pp. 275–283. https://doi.org/10.1016/B978-0-444-87109-1.50024-8

    Chapter  Google Scholar 

  28. K. Kieling, T. Rudolph, J. Eisert, Percolation, renormalization, and quantum computing with nondeterministic gates. Phys. Rev. Lett. 99(13), 130501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. Karschau, M. Zimmerling, B.M. Friedrich, Renormalization group theory for percolation in time-varying networks. Sci. Rep. 8(1), 1–8 (2018)

    Article  Google Scholar 

  30. G. Pawley, R. Swendsen, D. Wallace, K. Wilson, Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising model. Phys. Rev. B 29(7), 4030 (1984)

    Article  ADS  Google Scholar 

  31. C.F. Baillie, R. Gupta, K.A. Hawick, G.S. Pawley, Monte Carlo renormalization-group study of the three-dimensional Ising model. Phys. Rev. B 45(18), 10438 (1992)

    Article  ADS  Google Scholar 

  32. K. Binder, E. Luijten, Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models. Phys. Rep. 344(4–6), 179–253 (2001)

    Article  ADS  MATH  Google Scholar 

  33. W. Zhang, J. Liu, T.-C. Wei, Machine learning of phase transitions in the percolation and x y models. Phys. Rev. E 99(3), 032142 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Shen, W. Li, S. Deng, T. Zhang, Supervised and unsupervised learning of directed percolation. Phys. Rev. E 103(5), 052140 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Fu, D. Xiao, D. Li, H.R. Thomas, C. Li, Stochastic reconstruction of 3d microstructures from 2d cross-sectional images using machine learning-based characterization. Comput. Methods Appl. Mech. Eng. 390, 114532 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. C. Neugebauer, M. Webb, Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33(1), 74–82 (1962)

    Article  ADS  Google Scholar 

  37. L. Kazmerski, D.M. Racine, Growth, environmental, and electrical properties of ultrathin metal films. J. Appl. Phys. 46(2), 791–795 (1975)

    Article  ADS  Google Scholar 

  38. M. Hövel, B. Gompf, M. Dressel, Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 81(3), 035402 (2010)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation Grant Directorate for Engineering (ECCS-2028997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gururaj Naik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., He, Y., Yang, K. et al. Scaling electrical percolation networks based on renormalization group theory. Appl. Phys. A 128, 685 (2022). https://doi.org/10.1007/s00339-022-05817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05817-1

Keywords