Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Ni-doped SnS2: an investigation into its optical, magnetic, and electronic structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic and local structure of dilute magnetic materials with 2.5%, 5%, and 7.5% Ni-doped SnS2 was characterized using X-ray diffraction (XRD) data. These magnetic semiconductors can be used in spintronics, half-metals, and valleytronics. This research utilizes XRD data to elucidate the electron density mapping (electronic structure) of 3D and 2D MEM (maximum entropy method), focusing on bonding behavior and the accumulation of interstitial charges in regions outside the regular lattice. Pure tin disulfide (SnS2) is diamagnetic, but nickel (Ni) doping converts it to mild ferromagnetism, with a maximum magnetization of 0.4726 emu/g and 0.4659 emu/g and a coercivity of 78 Oe and 93 Oe at 2.5% and 7.5% Ni concentrations, respectively. Using MEM electron density analysis, magnetic saturation and coercivity are also highly connected. The 5% Ni-doped SnS2 composition has the highest interstitial charge, resulting in a more covalent character responsible for excellent electrical conduction and reduced magnetism. Optical absorption and energy gap engineering are discussed based on cation deficiency analysis employing XRD data. Photoluminescence (PL) emission reveals that Ni doping has no direct influence on SnS2 systems. However, Ni doping in SnS2 increases the vacancy/interstitial charge, which indirectly corresponds with PL emission. Electron spin resonance (ESR) analysis reveals the presence of interstitial Ni2+ and substitutional Ni3+ ions. This study found a correlation between charge buildup at substitutional and interstitial sites, type, and strength of bonding, and physical properties like magnetism and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Mendeley data repository.

References

  1. N. Yaqoob, G. Murtaza, M. Waqas Iqbal, N.A. Noor, A. Mahmood, S.M. Ramay, W. Al-Masry, N.Y.A. Al-Garadi, J. Mater. Res. Technol. 9, 10511 (2020)

    Google Scholar 

  2. W.E. Pickett, D.J. Singh, Phys. Rev. B Condens. MatterCondens. Matter 53, 1146 (1996)

    ADS  Google Scholar 

  3. J.M.D. Coey, M. Venkatesan, J. Appl. Phys. 91, 8345 (2002)

    ADS  Google Scholar 

  4. Y. Liu, B.G. Liu, J. Magn. Magn. Mater.Magn. Magn. Mater. 307, 245 (2006)

    ADS  Google Scholar 

  5. V.A. Dinh, K. Sato, H. Katayama-Yoshida, IEEE Trans. Magn.Magn. 45, 2663 (2009)

    ADS  Google Scholar 

  6. Y. Liu, X. Cheng, Phys. E Low-Dimens. Syst. Nanostruct. 108, 90 (2019)

    ADS  Google Scholar 

  7. S. Lee, S. Shin, G. Ham, J. Lee, H. Choi, H. Park, H. Jeon, AIP Adv. 7, 45307 (2017)

    Google Scholar 

  8. W.Z. Xiao, G. Xiao, Q.Y. Rong, Q. Chen, L.L. Wang, J. Magn. Magn. Mater.Magn. Magn. Mater. 438, 152 (2017)

    ADS  Google Scholar 

  9. N. Zibouche, P. Philipsen, A. Kuc, T. Heine, Phys. Rev. B Condens. Matter Mater. Phys. 90, 125440 (2014)

    ADS  Google Scholar 

  10. B.D. Bhat, Mater. Today Commun. 33, 104626 (2022)

    Google Scholar 

  11. A. Ali, J.M. Zhang, I. Muhammad, X.M. Wei, Y.H. Huang, M.U. Rehman, I. Ahmad, Thin Solid Films 705, 138045 (2020)

    ADS  Google Scholar 

  12. M.P.B. Vega, M. Hinojosa-Reyes, A. Hernández-Ramírez, J.L.G. Mar, V. Rodríguez-González, L. Hinojosa-Reyes, J. Sol-Gel Sci. Technol. 85, 723 (2018)

    Google Scholar 

  13. B. Li, T. Xing, M. Zhong, L. Huang, N. Lei, J. Zhang, J. Li, Z. Wei, Nat. Commun.Commun. 8, 1 (2017). (81)

    ADS  Google Scholar 

  14. S. Ullah, A. Bouich, H. Ullah, B. Mari, M. Mollar, Sol. Energy 204, 654 (2020)

    ADS  Google Scholar 

  15. G. Mohan Kumar, F. Xiao, P. Ilanchezhiyan, S. Yuldashev, A. Madhan Kumar, H.D. Cho, D.J. Lee, T.W. Kang, Appl. Surf. Sci.. Surf. Sci. 455, 446 (2018)

    ADS  Google Scholar 

  16. J. Chen, F. Xin, S. Qin, X. Yin, Chem. Eng. J. 230, 506 (2013)

    Google Scholar 

  17. P.P. Dorneanu, A. Airinei, M. Grigoras, N. Fifere, L. Sacarescu, N. Lupu, L. Stoleriu, J. Alloys Compd. 668, 65 (2016)

    Google Scholar 

  18. H. Chu, F. Zhang, L. Pei, Z. Cui, J. Shen, M. Ye, J. Alloys Compd. 767, 583 (2018)

    Google Scholar 

  19. B. Sainbileg, M. Hayashi, Chem. Phys. 522, 59 (2019)

    Google Scholar 

  20. A. Zhang, L. Zhu, Z. Nan, Mater. Chem. Phys. 224, 156 (2019)

    Google Scholar 

  21. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu, J. Zeng, Angew. Chemie Int. Ed. 57, 10954 (2018)

    Google Scholar 

  22. D. Chen, S. Huang, R. Huang, Q. Zhang, T.T. Le, E. Cheng, R. Yue, Z. Hu, Z. Chen, J. Hazard. Mater. 368, 204 (2019)

    Google Scholar 

  23. R.S. Kumar, S.H.S. Dananjaya, M. De Zoysa, M. Yang, RSC Adv. 6, 108468 (2016)

    ADS  Google Scholar 

  24. J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, W. Zheng, CrystEngComm 14, 832 (2012)

    Google Scholar 

  25. H.M. Rietveld, J. Appl. Crystallogr.Crystallogr. 2, 65 (1969)

    ADS  Google Scholar 

  26. V. Petrícek, M. Dušek, L. Palatinus, Zeitschrift Fur Krist. Cryst. Mater. 229, 345 (2014)

    Google Scholar 

  27. S.F. Gull, G.J. Daniell, Nat. 272, 686 (1978). (2725655)

    ADS  Google Scholar 

  28. K.W. Chapman, MRS Bull. 41, 231 (2016). (413)

    ADS  Google Scholar 

  29. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Google Scholar 

  30. R.A. Young, D.B. Wiles, IUCr 15, 430 (1982). (Issn:0021-8898)

    Google Scholar 

  31. J.I. Langford, J. Appl. Crystallogr.Crystallogr. 11, 10 (1978)

    ADS  Google Scholar 

  32. H.M. Rietveld, Acta Crystallogr. Crystallogr. 22, 151 (1967)

    Google Scholar 

  33. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Solid State Commun.Commun. 149, 1919 (2009)

    ADS  Google Scholar 

  34. K.K. Pandimeena, M.C. Robert, S. Saravanakumar, Optik (Stuttg). 287, 171091 (2023)

    ADS  Google Scholar 

  35. D.M. Collins, G. Bricogne, M. Takata, E. Nishibori, M. Sakata, Angew. Chem. Int’l Ed 298, 2998 (1990). (49)

    Google Scholar 

  36. M. Thavarani, M.C. Robert, N. Pavithra, S.B. Prasath, Y.B. Kannan, A.A. Ahamed, Appl. Phys. A Mater. Sci. Process. 128, 1 (2022)

    Google Scholar 

  37. M. Thavarani, M.C. Robert, S.B. Prasath, N. Pavithra, P. Christuraj, S. Saravanakumar, Brazil. J. Phys. 52, 1 (2022)

    Google Scholar 

  38. M. Sakata, R. Mori, S. Kumazawa, M. Takata, H. Toraya, J. Appl. Crystallogr.Crystallogr. 23, 526 (1990)

    ADS  Google Scholar 

  39. A. Batou and C. Soize, 1, 431 (2013), https://doi.org/10.1137/120901386

  40. K. Momma, T. Ikeda, A.A. Belik, F. Izumi, J. Appl. Cryst. 41, 653 (2008)

    ADS  Google Scholar 

  41. K. Momma, F. Izumi, Urn 41, 653 (2008). (Issn:0021-8898)

    Google Scholar 

  42. R. Saravanan, M.C. Robert, J. Phys. Chem. Solids 70, 159 (2009)

    ADS  Google Scholar 

  43. A. Morales, N. Cooper, B.A. Reisner, T.C. DeVore, Chem. Thermodyn. Therm. Anal. 8, 100085 (2022)

    Google Scholar 

  44. R.M. Kannaujiya, S.H. Chaki, A.J. Khimani, Z.R. Parekh, M.P. Deshpande, Chem. Thermodyn. Therm. Anal. 6, 100058 (2022)

    Google Scholar 

  45. M. Al-Raeei, Chem. Thermodyn. Therm. Anal. 6, 100046 (2022)

    Google Scholar 

  46. I.-K. Jeong, J. Thompson, T. Proffen, A.M.P. Turner, S.J.L. Billinge, J. Appl. Crystallogr.Crystallogr. 34, 536 (2001)

    ADS  Google Scholar 

  47. C.L. Farrow, P. Juhas, J.W. Liu, D. Bryndin, E.S. Boin, J. Bloch, T. Proffen, S.J.L. Billinge, J. Phys. Condens. MatterCondens. Matter 19, 335219 (2007)

    Google Scholar 

  48. T.L. Christiansen, S.R. Cooper, K.M.O. Jensen, Nanoscale Adv. 2, 2234 (2020)

    ADS  Google Scholar 

  49. I.E. Wachs, C.J. Keturakis, Compr. Inorg. Chem. II (Second Ed. From Elem. To Appl. 7, 131 (2013)

    Google Scholar 

  50. D. Prabha, S. Ilangovan, S. Balamurugan, M. Suganya, S. Anitha, V.S. Nagarethinam, A.R. Balu, Optik (Stuttg). 142, 301 (2017)

    ADS  Google Scholar 

  51. K. Mochizuki, M. Satoh, K. Igaki, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes 22, 1414 (1983)

    Google Scholar 

  52. R. Nakata, Phys. Soc. Jpn. 37, 694 (2013)

    ADS  Google Scholar 

  53. D.V. Azamat, A.G. Badalyan, A. Dejneka, L. Jastrabik, J. Lančok, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Google Scholar 

  54. S.R. Damkale, S.S. Arbuj, G.G. Umarji, R.P. Panmand, S.K. Khore, R.S. Sonawane, S.B. Rane, B.B. Kale, Sustain. Energy Fuels 3, 3406 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge SAIF (Sophisticated Analytical Instrument Facility), STIC, Cochin University, Cochin, Kerala for the powder XRD, Instrumental Facilities, CIC, Madurai Kamaraj University for SEM and EDAX, Department of Chemistry, Indian Institute of Technology, Chennai, for the VSM measurements, Heber Analytical Instrumentation Facility, Bishop Heber College, Trichy, for UV–Visible and St. Joseph’s College, Tiruchirappalli for Photoluminescence spectrophotometry studies.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

NP: Investigation, Formal analysis, writing original draft, MCR: Supervision, Conceptualization, Methodology, Data Curation, writing review and editing, MA: Executing graphical techniques, Resources, Electronic artwork and editing.

Corresponding author

Correspondence to M. Charles Robert.

Ethics declarations

Conflict of interest

The authors declare that they have no known financial interests in any form or personal political and religious relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1259 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, N., Robert, M.C. & Arulmozhi, M. Ni-doped SnS2: an investigation into its optical, magnetic, and electronic structures. Appl. Phys. A 130, 46 (2024). https://doi.org/10.1007/s00339-023-07201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07201-z

Keywords