Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ∼20 000 (ringdown time ∼20 μs) and allows recording spectra of up to 200 cavity modes (2 cm−1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ∼5×10−10 cm−1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kastler, Appl. Opt. 1, 17 (1962)

    Google Scholar 

  2. D.Z. Anderson, J.C. Frisch, C.S. Masser, Appl. Opt. 23, 1238 (1984)

    Google Scholar 

  3. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  CAS  Google Scholar 

  4. D. Romanini, K.K. Lehmann, J. Chem. Phys. 99, 6287 (1993)

    Article  CAS  Google Scholar 

  5. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  CAS  Google Scholar 

  6. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  CAS  Google Scholar 

  7. B.A. Paldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zare, J. Appl. Phys. 83, 3991 (1998)

    Article  CAS  Google Scholar 

  8. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, Rev. Sci. Instrum. 71, 347 (2000)

    Article  CAS  Google Scholar 

  9. Y. He, B.J. Orr, Chem. Phys. Lett. 335, 215 (2001)

    Article  CAS  Google Scholar 

  10. J. Ye, L. Ma, J. Hall, SPIE Proc. Ser. 3270, 85 (1998)

    Article  CAS  Google Scholar 

  11. J. Morville, D. Romanini, A. Kachanov, M. Chenevier, Appl. Phys. B 78 (2004)

  12. J.T. Hodges, H. Layer, W. Miller, G. Scace, Rev. Sci. Instrum. 75, 849 (2004)

    Article  CAS  Google Scholar 

  13. N. van Leeuwen, J. Diettrich, A. Wilson, Appl. Opt. 42, 3670 (2003)

    CAS  PubMed  Google Scholar 

  14. J. Morville, M. Chenevier, A.A. Kachanov, D. Romanini, SPIE Proc. Ser. 4485, 236 (2001)

    Article  Google Scholar 

  15. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270, 538 (1997)

    Article  CAS  Google Scholar 

  16. B. Paldus, C. Harb, T. Spence, R. Zare, C. Gmachl, F. Capasso, D. Silvo, J. Baillargeon, A. Hutchinson, A. Cho, Opt. Lett. 25, 666 (2000)

    CAS  Google Scholar 

  17. J. Morville, D. Romanini, M. Chenevier, A. Kachanov, Appl. Opt. 41, 6980 (2002)

    PubMed  Google Scholar 

  18. R.W. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  Google Scholar 

  19. L. Gianfrani, R.W. Fox, L. Hollberg, J. Opt. Soc. Am. B 16, 2247 (1999)

    CAS  Google Scholar 

  20. Nicola J. van Leeuwen, Andrew C. Wilson, J. Opt. Soc. Am. B 21, 1713 (2004)

    Article  Google Scholar 

  21. A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307, 343 (1999)

    Article  CAS  Google Scholar 

  22. R. Peeters, G. Berden, A. Apituley, G. Meijer, Appl. Phys. B 71, 231 (2000)

    Article  CAS  Google Scholar 

  23. D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)

    Article  CAS  Google Scholar 

  24. J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40, 4904 (2001)

    Google Scholar 

  25. D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)

    Google Scholar 

  26. J. Morville, D. Romanini, M. Chenevier, Patent WO03031949, (Université J. Fourier, Grenoble FRANCE, 2003)

  27. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987)

    CAS  Google Scholar 

  28. F. Favre, D. Le Guen, IEEE J. Quant. Electron. 21, 1937 (1985)

    Article  Google Scholar 

  29. R.F. Kazarinov, C.H. Henry, IEEE J. Quant. Electron. 23, 1401 (1987)

    Article  Google Scholar 

  30. P. Laurent, A. Clairon, C. Breant, IEEE J. Quant. Electron. 25, 1131 (1989)

    Article  CAS  Google Scholar 

  31. H. Li, N. Abraham, Appl. Phys. Lett. 53, 2257 (1988)

    Article  CAS  Google Scholar 

  32. H. Li, H. Telle, IEEE J. Quant. Electron. 25, 257 (1989)

    Article  CAS  Google Scholar 

  33. H. Li, N. Abraham, IEEE J. Quant. Electron. 25, 1782 (1989)

    Article  Google Scholar 

  34. S.-I. Ohshima, H. Schnatz, J. Appl. Phys. 71, 3114 (1992)

    Article  CAS  Google Scholar 

  35. D. Schnier, A. Madej, Opt. Commun. 105, 388 (1994)

    Article  Google Scholar 

  36. C. Shin, M. Ohtsu, Opt. Lett. 15, 1455 (1990)

    CAS  Google Scholar 

  37. B. Young, F. Cruz, W. Itano, J. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)

    Article  CAS  Google Scholar 

  38. C. Tanner, B. Masterson, C. Wieman, Opt. Lett. 13, 357 (1988)

    CAS  Google Scholar 

  39. J. Morville, D. Romanini, Appl. Phys. B 74, 495 (2002)

    Article  CAS  Google Scholar 

  40. A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940 (1958)

    Article  CAS  Google Scholar 

  41. C. Henry, R. Logan, K. Bertness, J. Appl. Phys. 52, 4457 (1981)

    Article  CAS  Google Scholar 

  42. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  43. K. Petermann, Laser Diode Modulation and Noise (Kluwer Scientific Publishers, Tokyo, 1991)

    Google Scholar 

  44. L. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Mandin, et al., J. Quant. Spectrosc. Radiat. Transfer 60, 665 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Morville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morville, J., Kassi, S., Chenevier, M. et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B 80, 1027–1038 (2005). https://doi.org/10.1007/s00340-005-1828-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1828-z

PACS