Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A mid-infrared wavelength modulation spectroscopy (WMS) absorption sensor utilizing a quantum cascade laser (QCL) source for carbon monoxide detection at 4.6 μm and high-temperature thermometry has been developed and demonstrated. Measurements are made in a room-temperature gas cell and in high-temperature reflected-shock-heated gases. Room-temperature results demonstrate a minimum CO detectivity of 0.03 ppm per meter of absorption path length at a 1-kHz detection bandwidth, representing an order-of-magnitude increased sensitivity compared to scanned-wavelength direct absorption. High-temperature shock tube measurements demonstrate sensitive thermometry from 850 to 3500 K for pressures near 1 atm at detection bandwidths of 500 Hz and 1 kHz. Sensor determined temperatures agree with the post-reflected-shock conditions within ±1.9% (1σ deviation). To our knowledge, the thermometry measurements presented here represent the first WMS high-temperature thermometry measurements made using a QCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 22, 553 (1994)

    Article  ADS  Google Scholar 

  2. J. Faist, Opt. Photonics News 17, 32 (2006)

    Article  ADS  Google Scholar 

  3. Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Appl. Opt. 43, 2257 (2004)

    Article  ADS  Google Scholar 

  4. A.A. Kosterev, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, S. Wehe, M.G. Allen, Appl. Opt. 41, 1169 (2002)

    Article  ADS  Google Scholar 

  5. G. Wysocki, A.A. Kosterev, F.K. Tittel, Appl. Phys. B 80, 617 (2005)

    Article  ADS  Google Scholar 

  6. S. Wehe, M. Allen, X. Liu, J. Jeffries, R. Hanson, AIAA Paper AIAA-2003-588 (2003)

  7. S. Wehe, M. Allen, X. Liu, J. Jeffries, R. Hanson, Proc. IEEE Sens. 2, 295 (2003)

    Google Scholar 

  8. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 33, 725 (2011)

    Article  Google Scholar 

  9. J. Vanderover, M.A. Oehlschlaeger, Appl. Phys. B 99, 353 (2010)

    Article  ADS  Google Scholar 

  10. R.K. Hanson, P.A. Kuntz, C.H. Kruger, Appl. Opt. 16, 2045 (1977)

    Article  ADS  Google Scholar 

  11. R.K. Hanson, P.K. Falcone, Appl. Opt. 17, 2477 (1978)

    Article  ADS  Google Scholar 

  12. P.K. Falcone, R.K. Hanson, C.H. Kruger, Combust. Sci. Technol. 35, 81 (1983)

    Article  Google Scholar 

  13. M.G. Allen, Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  14. R. Barron-Jimenez, J.A. Caton, T.N. Anderson, R.P. Lucht, T. Walther, S. Roy, M.S. Brown, J.R. Gord, Appl. Phys. B 85, 185 (2006)

    Article  ADS  Google Scholar 

  15. J.M. Porter, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 97, 215 (2009)

    Article  ADS  Google Scholar 

  16. Z.W. Sun, Z.S. Li, B. Li, M. Aldén, P. Ewart, Appl. Phys. B 98, 593 (2010)

    Article  ADS  Google Scholar 

  17. J. Faist, T. Aellen, T. Gresch, M. Bek, M. Giovannini, in Mid-Infrared Coherent Sources and Applications: Progress in Quantum Cascade Lasers, ed. by M. Ebrahim-Zadeh, I.T. Sorokina (Springer, Dordrecht, 2008), pp. 171–192

    Chapter  Google Scholar 

  18. L.C. Philippe, R.K. Hanson, Appl. Opt. 32, 6090 (1993)

    Article  ADS  Google Scholar 

  19. H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 89, 407 (2007)

    Article  ADS  Google Scholar 

  20. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008)

    Article  ADS  Google Scholar 

  21. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161 (2009)

    Article  ADS  Google Scholar 

  22. A.Y. Chang, E.C. Rea, R.K. Hanson, Appl. Opt. 26, 885 (1987)

    Article  ADS  Google Scholar 

  23. M.A. Oehlschlaeger, D.F. Davidson, J.B. Jeffries, Appl. Opt. 44, 6599 (2005)

    Article  ADS  Google Scholar 

  24. G.V.H. Wilson, J. Appl. Phys. 34, 3276 (1963)

    Article  ADS  Google Scholar 

  25. R. Arndt, J. Appl. Phys. 36, 2522 (1965)

    Article  ADS  Google Scholar 

  26. J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)

    Article  ADS  Google Scholar 

  27. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)

    Article  ADS  Google Scholar 

  28. P. Kluczynski, O. Axner, Appl. Opt. 38, 5803 (1999)

    Article  ADS  Google Scholar 

  29. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  30. F. Thibault, R.Z. Martinez, J.L. Domenech, D. Bermejo, J.-P. Bouanich, J. Chem. Phys. 117, 2523 (2002)

    Article  ADS  Google Scholar 

  31. A.W. Mantz, V.M. Devi, D.C. Benner, M.A.H. Smith, A. Predoi-Cross, M. Dulick, J. Mol. Struct. 742, 99 (2005)

    Article  ADS  Google Scholar 

  32. J.T. Moss, A.M. Berkowitz, M.A. Oehlschlaeger, J. Biet, V. Warth, P.A. Glaude, F. Battin-Lecerc, J. Phys. Chem. A 112, 10843 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Oehlschlaeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderover, J., Wang, W. & Oehlschlaeger, M.A. A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy. Appl. Phys. B 103, 959–966 (2011). https://doi.org/10.1007/s00340-011-4570-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4570-8

Keywords