Abstract
Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.
Similar content being viewed by others
References
BANERJEE, S., CARLIN, B.P., and GELFAND, A.E. (2014), Hierarchical Modeling and Analysis for Spatial Data, CRC Press.
BANERJEE, S., GELFAND, A.E., FINLEY, A.O., and SANG, H. (2008), “Gaussian Predictive Process Models for Large Spatial Data Sets”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(4), 825–848.
BENBADIS, S.R. (2006), “Introduction to Sleep Electroencephalography”, in Sleep: A Comprehensive Handbook, USA: John Wiley and Sons, pp. 989–1024.
BONNEY, G.E. (1987), “Logistic Regression for Dependent Binary Observations”, Biometrics, 45, 951–973.
BRILLINGER, D.R. (1983), “A Generalized Linear Model with Gaussian Regressor Variables”, in A Festschrift for Erich L. Lehmann, Pacific Grove, CA:Wadsworth, pp. 97–114.
CAIADO, J., CRATO, N., and PEÑA, D. (2006), “A Periodogram-Based Metric for Time Series Classification”, Computational Statistics and Data Analysis 50(10), 2668–2684.
CORNFORD, D. (1998), “Non-Zero Mean Gaussian Process Prior Wind Field Models”, Technical Report, Aston University, Birmingham.
FOKIANOS, K., and KEDEM, B. (1998), “Prediction and Classification of Non-Stationary Categorical Time Series”, Journal of Multivariate Analysis, 67(2), 277–296.
FOKIANOS, K., and KEDEM, B. (2002), Regression Model for Time Series Analysis, Wiley Interscience.
FOKIANOS, K., and KEDEM, B. (2003), “Regression Theory for Categorical Time Series”, Statistical Science, 18(3), 357–376.
FRIEDMAN, J., HASTIE, T., and TIBSHIRANI, R. (2001), The Elements of Statistical Learning (Vol. 1), Springer Series in Statistics, Berlin: Springer.
FRIEDMAN, J.H. (2001), “Greedy Function Approximation: A Gradient Boosting Machine”, Annals of Statistics, 29(5), 1189–1232.
GELFAND, A.E., KOTTAS, A., and MACEACHERN, S.N. (2005), “Bayesian Nonparametric Spatial Modeling with Dirichlet Process Mixing”, Journal of the American Statistical Association 100(471), 1021–1035.
JACOBS, P.A., and LEWIS, P.A. (1978), “Discrete Time Series Generated by Mixtures II: Asymptotic Properties”, Journal of the Royal Statistical Society. Series B (Methodological), 40(2), 222–228.
KEENAN, D.M. (1982), “A Time Series Analysis of Binary Data”, Journal of the American Statistical Association 77(380), 816–821.
KUSS, M. (2006), “Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning”, Ph. D. thesis, Technische Universität Darmstadt.
LIN, X., and ZHANG, D. (1999), “Inference in Generalized Additive Mixed Models by Using Smoothing Splines”, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(2), 381–400.
LINDQUIST, M.A., and MCKEAGUE, I. (2009), “Logistic Regression with Brownian-Like Predictors”, Journal of the American Statistical Association 104, 1575–1585.
MAHARAJ, E.A. (2002), “Comparison of Non-Stationary Time Series in the Frequency Domain”, Computational Statistics and Data Analysis 40(1), 131–141.
MAHARAJ, E.A., D’URSO, P., and GALAGEDERA, D.U. (2010), “Wavelet-Based Fuzzy Clustering of Time Series”, Journal of Classification 27(2), 231–275.
MCCULLAGH, P. (1984), “Generalized Linear Models”, European Journal of Operational Research 16(3), 285–292.
MEYN, S.P., and Tweedie, R.L. (2012), Markov Chains and Stochastic Stability, Springer Science and Business Media.
MINKA, T.P. (2001), “A Family of Algorithms for Approximate Bayesian Inference”, Ph. D. thesis, Massachusetts Institute of Technology.
NEVSIMALOVA, S., and SONKA, K. (1997), “Poruchy Spanku a Bdeni”, Maxdorf/ Jessenius, Parha.
OPPER, M., and WINTHER, O. (2000), “Gaussian Processes for Classification: Mean Field Algorithms”, Neural Computation, 12(11), 2655-2684.
QUICK, H., BANERJEE, S., CARLIN, B.P. et al. (2013), “Modeling Temporal Gradients in Regionally Aggregated California Asthma Hospitalization Data”, The Annals of Applied Statistics 7(1), 154–176.
SNELSON, E., RASMUSSEN, C.E., and GHAHRAMANI, Z. (2004), “Warped Gaussian Processes”, Advances in Neural Information Processing Systems 16, 337–344.
STEIN, M.L. (2012), Interpolation of Spatial Data: Some Theory for Kriging, Springer Science and Business Media.
VANDENBERG-RODES, A., and SHAHBABA, B. (2015), “Dependent Matern Processes for Multivariate Time Series”, arXiv preprint arXiv:1502.03466.
WANG, F., and GELFAND, A.E.(2014), “Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes”, Journal of the American Statistical Association 109(508), 1565–1580.
WILLIAMS, C.K., and Barber, D. (1998), “Bayesian Classification with Gaussian Processes” IEEE Transactions on Pattern Analysis and Machine Intelligence, 20,(12), 1342–1351.
WILLIAMS, C.K., and RASMUSSEN, C.E. (2006), “Gaussian Processes for Machine Learning”, The MIT Press 2(3), 4.
ZHOU, B., MOORMAN, D.E., BEHSETA, S., OMBAO, H., and SHAHBABA, B. (2015), “A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision Making”, Journal of the American Statistical Association 111, 1–44.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gao, X., Shahbaba, B. & Ombao, H. Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States. J Classif 35, 549–579 (2018). https://doi.org/10.1007/s00357-018-9268-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00357-018-9268-8