Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hierarchical template-based hexahedral mesh generation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work describes a hexahedral mesh generation algorithm ideally suited for transition subdomain meshes in the context of any domain decomposition meshing strategy. The algorithm is based on an automatic hierarchical region decomposition in which, in the last level, it is possible to generate hexahedral elements with a conventional mapping strategy. Templates usually impose restrictions on meshes on boundary surfaces of a subdomain to be meshed. The proposed hierarchical template scheme eliminates many of these restrictions, creating more options in surface meshes and mesh refinement as input boundary data. This work implements four basic templates for volumes that should be simplified by a unit box. The volume decomposition is performance using a cube-shaped parametric space in the local coordinate system. The algorithm decomposes hierarchically a volume until all volumes should be mappable to generate elements by the 3D mapping approach. Examples demonstrate that this idea may result in structured meshes in complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, Third Edn. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  2. Brassard G, Bratley P, Fundamentals of algorithmics: Prentice-Hall, Inc., 1996

  3. White D, Mingwu L, Benzley SE, Sjaardema GD (1995) Automated hexahedral mesh generation by virtual decomposition. In: 4th International Meshing Roundtable, pp 165–176

  4. Lai M, Benzley S, White D (2000) “Automatic Hexahedral Mesh Generation by Generalized Multiple Source ro Multiple Target Sweeping”. Int J Numer Meth Eng 49:261–275

    Article  MATH  Google Scholar 

  5. Blacker T (1996) The Cooper Tool. In: Proceedings of 5th international meshing roundtable, pp. 130–30

  6. Knupp PM (1998) Next-generation sweep tool: a method for generating all-hex meshes on two-and-one-half dimensional geometries. In: Proceedings of 7th international meshing roundtable, pp. 505–531

  7. White DR, Saigal S, Owen SJ (2004) CCSweep: automatic decomposition of multi-sweep volumes. Eng Comput 20:222–236

    Article  Google Scholar 

  8. Ruiz-Gironés E, Roca X, Sarrate J (2010) Automatic generation of hexahedral meshes for volumes with non-planar surfaces using the multi-sweeping method. In: Proceedings of the 7th international conference on engineering computational technology

  9. Chen JJ, Xiao ZF, Cao J, Zhu CY, Zheng Y (2012) “Automatic hexahedral mesh generation for many-to-one sweep volumes,” Zhejiang Daxue Xuebao (Gongxue Ban. J Zhejiang Univ (Eng Sci) 46:274–279

    Google Scholar 

  10. Wu H, Gao S (2014) Automatic swept volume decomposition based on sweep directions extraction for hexahedral meshing. Proc Eng 82:136–148

    Article  Google Scholar 

  11. Blum H (1967) A transformation for extracting new descriptors of shape, models for the perception of speech and visual form. MIT Press, Cambridge

    Google Scholar 

  12. Armstrong CG, Tam TKH, Robinson DJ, McKeag RM, Price MA (1991) Automatic generation of well structured meshes using medial axis and surface subdivision. In: Proceedings of the 17th ASME design automation, conference: advances in design automation, vol 2. Miami, FL, pp. 139–146

  13. Price MA, Armstrong CG (1997) Hexahedral mesh generation by medial surface subdivision: Part ii. solids with flat and concave edges. Int J Numer Meth Eng 40:111–136

    Article  Google Scholar 

  14. Price MA, Armstrong CG, Sabin MA (1995) Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges. Int J Numer Meth Eng 38:3335–3359

    Article  MATH  Google Scholar 

  15. Lu JHC, Song I, Quadros WR, Shimada K (2011) Volumetric decomposition via medial object and pen-based user interface for hexahedral mesh generation. In: Proceedings of the 20th international meshing roundtable, IMR 2011, pp. 179–196

  16. Lu JHC, Song I, Quadros WR, Shimada K (2010) Pen-based user interface for geometric decomposition for hexahedral mesh generation. In: Proceedings of the 19th international meshing roundtable, IMR 2010, pp. 263–278

  17. Lu JHC, Song I, Quadros WR, Shimada K (2013) Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing. In: Proceedings of the 21st international meshing roundtable, IMR 2012, pp. 297–314

  18. Subrahmanyam S, Wozny M (1995) An overview of automatic feature recognition techniques for computer-aided process planning. Comput Ind 26:1–21

    Article  Google Scholar 

  19. Tautges TJ, Liu SS, Lu Y, Kraftcheck J, Gadh R (1997) Feature recognition applications in mesh generation. Am Soc Mech Eng Appl Mech Div, AMD 220:117–121

    Google Scholar 

  20. Liu SS, Gadh R (1997) Automatic hexahedral mesh generation by recursive convex and swept volume decomposition. In: 6th international meshing roundtable, pp 217–231

  21. Lu Y, Gadh R, Tautges TJ (2001) Feature based hex meshing methodology: feature recognition and volume decomposition. CAD Comput Aided Design 33:221–232

    Article  Google Scholar 

  22. Gordon WJ, Hall CA (1973) Contruction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Meth Eng 7:461–477

    Article  MATH  Google Scholar 

  23. Cook WA (1974) Body Oriented (natural) Co-ordinates for Generating Three Dimensional Meshes. Int J Numer Meth Eng 8:27–43

    Article  MATH  Google Scholar 

  24. Cook WA, Oakes WR (1982) Mapping methods for generation three-dimensional meshes. Comput Mech Eng 8:67–72

    Google Scholar 

  25. Perucchio R, Ingraffea AR, Abel JF (1982) Interative computer graphics preprocessing for three-dimensional finite element analysis. Int J Numer Meth Eng 18(6):909–926

    Article  MATH  Google Scholar 

  26. Yerry MA, Shephard MS (1984) “Automatic three-dimensional mesh generation by the modified-octree technique”. Int J Numer Meth Eng 20:1965–1990

    Article  MATH  Google Scholar 

  27. Thompson JF, Soni BK, Weatherill NP (1999) Handbook of grid generation. CRC Press, Boca Raton

    MATH  Google Scholar 

  28. Zhang H, Zhao G (2007) Adaptive hexahedral mesh generation based on local domain curvature and thickness using a modified grid-based method. Finite Elem Anal Des 43:691–704

    Article  Google Scholar 

  29. Ito Y, Shih AM, Soni BK (2009) Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int J Numer Methods Eng 77:1809–1833

    Article  MathSciNet  MATH  Google Scholar 

  30. Schneiders R, Schindler R, Weiler F (1996) Octree-based generation of hexahedral element meshes. In: 5th international meshing roundtable, pp 205–216

  31. Schneiders R (2000) Algorithms for quadrilateral and hexahedral mesh generation. In: VKI lecture series on computational fluid dynamic, pp 20–24

  32. Ansys (2015) ANSYS Modeling and Meshing Guide. https://www.academia.edu/7000727/ANSYS_Modeling_and_Meshing_Guide

  33. De Oliveira Miranda AC, Martha LF (2013) Quadrilateral mesh generation using hierarchical templates. In: Proceedings of the 21st international meshing roundtable, IMR 2012, pp. 279–296

  34. Miranda ACDO, Martha LF (2015) Hierarchical template-based quadrilateral mesh generation. Eng Comput 1–15, (2015/01/06)

  35. Haber R, Abel JF (1982) Discrete transfinite mappings for description and meshing of three-dimensional surfaces using interactive computer graphics. Int J Numer Methods Eng 18:41–66

    Article  MATH  Google Scholar 

  36. Haber R, Shephard MS, Abel JF, Gallagher RH, Greenberg DP (1981) A general two-dimensional, graphical finite element preprocessor utilizing discrete transfinite mappings. Int J Numer Meth Eng 17:1015–1044

    Article  MATH  Google Scholar 

  37. Canann SA, Tristano JR, Staten ML (1998) An approach to combined laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes. In: 7th International Mesh Roundtable, pp 479–494

  38. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented software. Pearson Education

  39. de Oliveira Miranda AC, Lira WWM, Marques RC, Pereira AMB, Cavalcante-Neto JB, Martha LF (2015) Finite element mesh generation for subsurface simulation models. Eng Comput 31(2):305–324

    Article  Google Scholar 

  40. Miranda ACO, Cavalcante-Neto JB, Martha LF (1999) An algorithm for two-dimensional mesh generation for arbitrary regions with cracks. XII Brazilian symposium on computer graphics and image processing (Cat. No.PR00481), pp 29–38

  41. Miranda ACO, Lira WWM, Cavalcante Neto JB, Sousa AR, Martha LF (2013) A 3D adaptive mesh generation approach using geometric modeling with multi-regions and parametric surfaces. J Comput Inf Sci Eng 13:021002–021013 p

    Article  Google Scholar 

  42. Miranda ACO, Martha LF (1999) Three-dimensional Transfinite Mapping. In: XX Ibero-Latin American congress on computational methods in engineering, São Paulo, SP

  43. Miranda ACO, Martha LF (2002) Mesh generation on high-curvature surfaces based on a background quadtree structure. In: Proceedings of 11th international meshing roundtable, vol. 1, pp. 333–341

  44. Miranda ACO, Martha LF, Wawrzynek PA, Ingraffea AR (2009) Surface mesh regeneration considering curvatures. Eng Comput 25:207–219

    Article  Google Scholar 

  45. Cavalcante-Neto JB, Wawrzynek PA, Carvalho MTM, Martha LF, Ingraffea AR (2001) An algorithm for three-dimensional mesh generation for arbitrary regions with cracks. Eng Comput 17:75–91

    Article  MATH  Google Scholar 

  46. GOCAD (2006) From simple to complex: 20 years of high-quality subsurface modeling. http://www.pdgm.com/products/gocad/. Accessed Nov 2017

  47. Cuillière J, Francois V, Drouet J (2012) Automatic 3D mesh generation of multiple domains for topology optimization methods. In: 21th international meshing roundtable, pp 243–249

  48. Knupp PM (2000) Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I—a framework for surface mesh optimization. Int J Numer Meth Eng 48:401–420

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq), the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), the PUC-Rio Technical-Scientific Software Development Institute (Tecgraf/PUC-Rio), and the University of Brasília (UnB) for the financial support and for providing the necessary space and resources used during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlos de Oliveira Miranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Miranda, A.C., Martha, L.F. Hierarchical template-based hexahedral mesh generation. Engineering with Computers 34, 465–474 (2018). https://doi.org/10.1007/s00366-017-0552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0552-8

Keywords