Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents a spectral collocation technique to solve fractional stochastic Volterra integro-differential equations (FSV-IDEs). The algorithm is based on shifted fractional order Legendre orthogonal functions generated by Legendre polynomials. The shifted fractional order Legendre–Gauss–Radau collocation (SFL-GR-C) method is developed for approximating the FSV-IDEs, with the objective of obtaining a system of algebraic equations. For computational purposes, the Brownian motion function W(x) is discretized by Lagrange interpolation, while the integral terms are interpolated by Legendre–Gauss–Lobatto quadrature. Numerical examples demonstrate the accuracy and applicability of the proposed technique, even when dealing with non-smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, New York

    Book  MATH  Google Scholar 

  2. Yang Xiao-Jun (2019) General fractional derivatives: theory, methods and applications. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  3. Yang Xiao-Jun, Gao Feng, Yang Ju (2020) General fractional derivatives with applications in viscoelasticity. Academic Press, London

    MATH  Google Scholar 

  4. Heydaria MH, Atangana A (2019) A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana-Baleanu-Caputo derivative. Chaos Solitons Fractals 128:339–348

    Article  MathSciNet  MATH  Google Scholar 

  5. Owolab KM, Atangana Abdon (2018) Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems. Comput Appl Math 37(2):2166–2189

    Article  MathSciNet  MATH  Google Scholar 

  6. Owolabi KM, Atangana A (2019 Finite difference approximations. In: Numerical methods for fractional differentiation. Springer Series in Computational Mathematics, vol 54. Springer, Singapore

  7. Xiao-Jun Yang, Baleanu D, Srivastava H (2015) Local fractional integral transforms and their applications. Academic Press, London

    MATH  Google Scholar 

  8. Amabili M, Balasubramanian P, Breslavsky I (2019) Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas. J Mech Behav Biomed Mater 99:186–197

    Article  Google Scholar 

  9. Yang X-J, Tenreiro Machado JA (2019) A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation. Math Methods Appl Sci 42(18):7539–7544

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang Xiao-Jun, Baleanu Dumitru, Lazarevi Mihailo P, Caji Milan S (2015) Fractal boundary value problems for integral and differential equations with local fractional operators. Therm Sci 19(3):959–966

    Article  Google Scholar 

  11. Yang X-J, Tenreiro Machado JA, Nieto Juan J (2017) A new family of the local fractional PDEs. Fund Inform 151(1–4):63–75

    MathSciNet  MATH  Google Scholar 

  12. Li X, Xue Z, Tian X (2018) A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties. Int J Therm Sci 132:249–256

    Article  Google Scholar 

  13. Yang Xiao-Jun, Gao Feng, Yang Ju, Zhou Hong-Wei (2018) Fundamental solutions of the general fractional-order diffusion equations. Math Methods Appl Sci 41(18):9312–9320

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang X-J, Feng Gao, Tenreiro Machado JA, Dumitru Baleanu (2017) A new fractional derivative involving the normalized sinc function without singular kernel. Eur Phys J Spec Top 226(16–18):3567–3575

    Article  Google Scholar 

  15. Yang X-J, Srivastava Hari M, Tenreiro Machado JA (2016) A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm Sci 20(2):753–756

    Article  Google Scholar 

  16. Yang X-J, Tenreiro Machado JA (2017) A new fractional operator of variable order: application in the description of anomalous diffusion. Phys A Stat Mech Appl 481:276–283

    Article  MathSciNet  Google Scholar 

  17. Abdelkawy MA, Lopes António M, Babatin MM (2020) Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order. Chaos Solitons Fractals 134:109721

    Article  MathSciNet  MATH  Google Scholar 

  18. Doha EH, Abdelkawy MA, Amin AZM, Lopes António M (2018) A space-time spectral approximation for solving nonlinear variable-order fractional sine and Klein-Gordon differential equations. Comput Appl Math 37:6212–6229

    Article  MathSciNet  MATH  Google Scholar 

  19. Hafez RM, Zaky MA, Abdelkawy MA (2020) Jacobi spectral Galerkin method for distributed-order fractional Rayleigh-Stokes problem for a generalized second grade fluid. Front Phys 7:240

    Article  Google Scholar 

  20. Abdelkawy MA (2020) An Improved Collocation Technique For Distributed-Order Fractional Partial Differential Equations. Roman Rep Phys 72:104

    Google Scholar 

  21. Zaky MA (2019) Existence, uniqueness and numerical analysis of solutions of tempered fractional boundary value problems. Appl Numer Math 145:429–457

    Article  MathSciNet  MATH  Google Scholar 

  22. Morales-Delgado VF, Gomez-Aguilar JF, Saad Khaled M, Altaf KM, Agarwal P (2019) Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach. Phys A Stat Mech Appl 523:48–65

    Article  MathSciNet  Google Scholar 

  23. Mehedi IM, Al-Saggaf UM, Mansouri R, Bettayeb M (2019) Two degrees of freedom fractional controller design: application to the ball and beam system. Measurement 135:13–22

    Article  Google Scholar 

  24. Yang Xiao-Jun (2017) New general fractional-order rheological models with kernels of Mittag–Leffler functions. Roman Rep Phys 69(4):118

    Google Scholar 

  25. Liu Jian-Gen, Yang Xiao-Jun, Feng Yi-Ying, Zhang Hong-Yi (2020) On the generalized time fractional diffusion equation: symmetry analysis, conservation laws, optimal system and exact solutions. Int J Geometr Methods Mod Phys 17(1):2050013

    Article  MathSciNet  Google Scholar 

  26. Gómez-Aguilar JF, Yépez-Martinez H, Escobar-Jiménez RF, Astorga-Zaragoza CM, Reyes-Reyes J (2016) Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl Math Model 40(21–22):9079–9094

    Article  MathSciNet  MATH  Google Scholar 

  27. Koskodan R, Allen E (2008) Construction of consistent discrete and continuous stochastic models for multiple assets with application to option valuation. Math Comput Modell 48:1775–1786

    Article  MathSciNet  MATH  Google Scholar 

  28. Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations. Springer, Berlin (Applications of Mathematics)

    MATH  Google Scholar 

  29. Milstein GN (1995) Numerical integration of stochastic differential equations. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  30. Ashyralyev A (2008) On modified Crank–Nicholson difference schemes for stochastic parabolic equation. Numer Funct Anal Optim 29(3–4):268–282

    Article  MathSciNet  MATH  Google Scholar 

  31. Hausenblas E (2007) Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type. SIAM J Numer Anal 46(1):437–471

    Article  MathSciNet  MATH  Google Scholar 

  32. Kamrani M, Hosseini SM (2010) The role of coefficients of a general SPDE on the stability and convergence of a finite difference method. J Comput Appl Math 234:1426–1434

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu D (2003) Convergence of the spectral method for stochastic Ginzburg–Landau equation driven by space-time white noise. Commun Math Sci 1(2):361–375

    Article  MathSciNet  MATH  Google Scholar 

  34. Lord GJ, Shardlow T (2007) Post processing for stochastic parabolic partial differential equations. SIAM J Numer Anal 45(2):870–889

    Article  MathSciNet  MATH  Google Scholar 

  35. Roth CH (2006) A combination of finite difference and Wong–Zakai methods for hyperbolic stochastic partial differential equations. Stoch Anal Appl 24:221–240

    Article  MathSciNet  MATH  Google Scholar 

  36. Walsh JB (2005) Finite element methods for parabolic stochastic PDE’s. Potential Anal 23:1–43

    Article  MathSciNet  MATH  Google Scholar 

  37. Yan Y (2005) Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J Numer Anal 43:1363–1384

    Article  MathSciNet  MATH  Google Scholar 

  38. Taheri Z, Javadi SH, Babolian E (2017) Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method. J Comput Appl Math 237:336–347

    Article  MathSciNet  MATH  Google Scholar 

  39. Abdelkawy MA, Zaky MA, Bhrawy AH, Baleanu D (2015) Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Rom Rep Phys 67(3)

  40. Doha EH (2004) On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J Phys A Math Gen 37:657–675

    Article  MathSciNet  MATH  Google Scholar 

  41. Bhrawy AH, Ahmed Engy A, Baleanu D (2014) An efficient collocation technique for solving generalized Fokker–Planck type equations with variable coefficients. Proc Rom Acad Ser A 15:322–330

    MathSciNet  Google Scholar 

  42. Bhrawy AH (2013) A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients. Appl Math Comput 222:255–264

    MathSciNet  MATH  Google Scholar 

  43. Doha EH, Bhrawy AH, Abdelkawy MA, Gorder RAV (2014) Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1 + 1 nonlinear Schrödinger equations. J. Comput. Phys. 261:244–255

    Article  MathSciNet  MATH  Google Scholar 

  44. Bhrawy AH, Abdelkawy MA (2015) A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J Comput Phys 294:462–483

    Article  MathSciNet  MATH  Google Scholar 

  45. Bhrawy AH, Al-Zahrani AA, Alhamed YA, Baleanu D (2014) A new generalized Laguerre–Gauss collocation scheme for numerical solution of generalized fractional Pantograph equations. Rom J Phys 59:646–657

    MATH  Google Scholar 

  46. Odibat Zaid M, Shawagfeh Nabil T (2007) Generalized Taylor’s formula. Appl Math Comput 186:286–293

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doha, E.H., Abdelkawy, M.A., Amin, A.Z.M. et al. Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations. Engineering with Computers 38 (Suppl 2), 1363–1373 (2022). https://doi.org/10.1007/s00366-020-01263-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01263-w

Keywords

Mathematics Subject Classification