Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Application of the Bezier integration technique with enhanced stability in forward dynamics of constrained multibody systems with Baumgarte stabilization method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper deals with the study and application of a numerical integration scheme based on the Bézier curves to obtain stable and accurate solutions of the governing differential–algebraic equations (DAEs) of constrained multibody systems. For this purpose, the standard Lagrange multiplier method is utilized to derive the equations of motion for constrained mechanical systems. It is well known that constraints violation and instability are amongst the main computational difficulties of various numerical integration algorithms to provide accurate solutions for DAEs. In the present study, the Baumgarte stabilization technique is employed, as well as a criterion to select the Baumgarte parameters based on the stability domain analysis. Stability regions based on dimensionless Baumgarte parameters are obtained for different orders of Bézier curves together with other classic numerical integration algorithms, namely the Adams–Bashforth and Runge–Kutta techniques. It is shown that the proper identification and selection of Baumgarte parameters is highly dependent on the integration scheme utilized. A comparative analysis performed within the present work reveals that the Bézier method provides substantially wider region of stability for the same level of computational effort. A planar slider-crank mechanism is considered as an example of application to demonstrate and implement the Bézier technique, which permits to examine the benefits of the presented stability analysis. It is demonstrated that for certain values of Baumgarte parameters, the Bézier method remains stable, while other methods become unstable. Due to the good performance of the applied method based on the Bézier approach, both in terms of efficiency and stability, it is expected that the introduced integration method to be used for various benchmark studies performed under the umbrella of multibody dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shabana AA (2010) Computational dynamics, 3rd edn. Wiley, New York

    Book  Google Scholar 

  2. Ginsberg JH (2008) Engineering dynamics. Cambridge University Press, New York

    Google Scholar 

  3. Lagrange JL (1788) Mécanique analytique, 1st edn. L’Académie Royal des Sciences, Paris

  4. Hamilton WR (1834) On a general method in dynamics. Philos Trans R Soc Lond 247–308

  5. Gibbs JW (1879) On the fundamental formulae of dynamics. Am J Math 2:49–64. https://doi.org/10.2307/2369196

    Article  MathSciNet  Google Scholar 

  6. Dirac PAM (1964) Lectures on quantum mechanics. Yeshiva University, New York

    Google Scholar 

  7. Kane TR, Wang CF (1965) On the derivation of equations of motion. J Soc Ind Appl Math 13:487–492. https://doi.org/10.1137/0113030

    Article  MathSciNet  Google Scholar 

  8. Kane TR, Levinson DA (1980) Formulation of equations of motion for complex spacecraft. J Guid Control Dyn 3:99–112. https://doi.org/10.2514/3.55956

    Article  MathSciNet  Google Scholar 

  9. Udwadia FE, Kalaba RE (1992) A new perspective on constrained motion. Proc R Soc Lond Ser A Math Phys Sci 439:407–410. https://doi.org/10.1098/rspa.1992.0158

    Article  MathSciNet  Google Scholar 

  10. Talaeizadeh A, Forootan M, Zabihi M, NejatPishkenari H (2020) Comparison of Kane’s and Lagrange’s methods in analysis of constrained dynamical systems. Robotica. 38:2138–2150. https://doi.org/10.1017/S0263574719001899

    Article  Google Scholar 

  11. Marques F, Roupa I, Silva MT, Flores P, Lankarani HM (2021) Examination and comparison of different methods to model closed loop kinematic chains using Lagrangian formulation with cut joint, clearance joint constraint and elastic joint approaches. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2021.104294

    Article  Google Scholar 

  12. Hardell C (1996) An integrated system for computer aided design and analysis of multibody systems. Eng Comput. https://doi.org/10.1007/BF01200259

    Article  Google Scholar 

  13. Daberkow A, Kreuzer EJ (1999) Integrated approach for computer aided design in multibody system dynamics. Eng Comput. https://doi.org/10.1007/s003660050011

    Article  Google Scholar 

  14. González M, González F, Luaces A, Cuadrado J (2010) A collaborative benchmarking framework for multibody system dynamics. Eng Comput. https://doi.org/10.1007/s00366-009-0139-0

    Article  Google Scholar 

  15. Kortelainen J, Mikkola A (2015) Semantic restrictions and rules in applications of multibody dynamics. Eng Comput. https://doi.org/10.1007/s00366-013-0326-x

    Article  Google Scholar 

  16. Chen Y, Feng J, Peng X, Sun Y, He Q, Yu C (2021) An approach for dynamic analysis of planar multibody systems with revolute clearance joints. Eng Comput. https://doi.org/10.1007/s00366-020-00935-x

    Article  Google Scholar 

  17. Rodrigues da Silva M, Marques F, Tavares da Silva M, Flores P (2022) A comparison of spherical joint models in the dynamic analysis of rigid mechanical systems: ideal, dry, hydrodynamic and bushing approaches. Multibody Syst Dyn. https://doi.org/10.1007/s11044-022-09843-y

    Article  MathSciNet  Google Scholar 

  18. Celdran A, Saura M, Dopico D (2022) Computational structural analysis of spatial multibody systems based on mobility criteria. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2022.104985

    Article  Google Scholar 

  19. Yuan T, Fan W, Ren H (2023) A general nonlinear order-reduction method based on the referenced nodal coordinate formulation for a flexible multibody system. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2023.105290

    Article  Google Scholar 

  20. Go MS, Han S, Lim JH, Kim JG (2023) An efficient fixed-time increment-based data-driven simulation for general multibody dynamics using deep neural networks. Eng Comput. https://doi.org/10.1007/s00366-023-01793-z

    Article  Google Scholar 

  21. Boyce WE, DiPrima RC (2012) Elementary differential equations and boundary value problems, 10th edn. Wiley, Hoboken

    Google Scholar 

  22. Marques F, Souto AP, Flores P (2017) On the constraints violation in forward dynamics of multibody systems. Multibody Syst Dyn 39:385–419. https://doi.org/10.1007/s11044-016-9530-y

    Article  MathSciNet  Google Scholar 

  23. Baumgarte J (1972) Stabilization of constraints and integrals of motion in dynamical systems. Comput Methods Appl Mech Eng 1:1–16. https://doi.org/10.1016/0045-7825(72)90018-7

    Article  MathSciNet  Google Scholar 

  24. Wehage RA, Haug EJ (1982) Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J Mech Des Trans ASME 104:247–255. https://doi.org/10.1115/1.3256318

    Article  Google Scholar 

  25. Bayo E, Garcia De Jalon J, Serna MA (1988) A modified lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput Methods Appl Mech Eng 71:183–195. https://doi.org/10.1016/0045-7825(88)90085-0

    Article  MathSciNet  Google Scholar 

  26. Chang CO, Nikravesh PE (1985) An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems. J Mech Des Trans ASME 107:488–492. https://doi.org/10.1115/1.3260750

    Article  Google Scholar 

  27. Yoon S, Howe RM, Greenwood DT (1995) Stability and accuracy analysis of baumgarte’s constraint violation stabilization method. J Mech Des Trans ASME 117:446–453. https://doi.org/10.1115/1.2826699

    Article  Google Scholar 

  28. Ostermeyer GP (1990) On Baumgarte stabilization for differential algebraic equations. Real-Time Integr Methods Mech Syst Simul. https://doi.org/10.1007/978-3-642-76159-1_10

    Article  Google Scholar 

  29. Lin ST, Hong MC (1998) Stabilization method for numerical integration of multibody mechanical systems. J Mech Des Trans ASME 120:565–572. https://doi.org/10.1115/1.2829316

    Article  Google Scholar 

  30. Lin ST, Huang JN (2002) Stabilization of Baumgarte’s method using the Runge–Kutta approach. J Mech Des Trans ASME 124:633–641. https://doi.org/10.1115/1.1519277

    Article  Google Scholar 

  31. Flores P, MacHado M, Seabra E, Tavares Da Silva M (2011) A parametric study on the baumgarte stabilization method for forward dynamics of constrained multibody systems. J Comput Nonlinear Dyn 6:1–9. https://doi.org/10.1115/1.4002338

    Article  Google Scholar 

  32. Kim JK, Chung IS, Lee BH (1990) Determination of the feedback coefficients for the constraint violation stabilization method. Proc Inst Mech Eng Part C J Mech Eng Sci 204:233–242. https://doi.org/10.1243/PIME_PROC_1990_204_101_02

    Article  Google Scholar 

  33. Ascher UM, Chin H, Reich S (1994) Stabilization of DAEs and invariant manifolds. Numer Math 67:131–149. https://doi.org/10.1007/s002110050020

    Article  MathSciNet  Google Scholar 

  34. Ascher UM, Chin H, Petzold LR, Reich S (1995) Stabilization of constrained mechanical systems with DAEs and invariant manifolds. Mech Struct Mach 23:135–157. https://doi.org/10.1080/08905459508905232

    Article  MathSciNet  Google Scholar 

  35. Guizhi L, Rong L (2018) Determination of stability correction parameters for dynamic equations of constrained multibody systems. Math Probl Eng. https://doi.org/10.1155/2018/8945301

    Article  Google Scholar 

  36. Park KC, Chiou JC (1988) Stabilization of computational procedures for constrained dynamical systems. J Guid Control Dyn 11:365–370. https://doi.org/10.2514/3.20320

    Article  MathSciNet  Google Scholar 

  37. Park KC, Chiou JC, Downe JD (1990) Explicit-implicit staggered procedure for multibody dynamics analysis. J Guid Control Dyn 13:562–570. https://doi.org/10.2514/3.25370

    Article  MathSciNet  Google Scholar 

  38. Bayo E, Avello A (1994) Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dyn 5:209–231. https://doi.org/10.1007/BF00045677

    Article  Google Scholar 

  39. Weijia Z, Zhenkuan P, Yibing W (2000) An automatic constraint violation stabilization method for differential/ algebraic equations of motion in multibody system dynamics. Appl Math Mech 21:103–108. https://doi.org/10.1007/BF02458546

    Article  Google Scholar 

  40. Blajer W (2002) Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst Dyn 8:141–159. https://doi.org/10.1023/A:1019581227898

    Article  MathSciNet  Google Scholar 

  41. Hong M, Choi MH, Jung S, Welch S, Trapp J (2005) Effective constrained dynamic simulation using implicit constraint enforcement. Proc IEEE Int Conf Robot Autom. https://doi.org/10.1109/ROBOT.2005.1570816

    Article  Google Scholar 

  42. Hong M, Welch S, Trapp J, Choi MH (2006) Implicit constraint enforcement for rigid body dynamic simulation. Lect Notes Comput Sci. https://doi.org/10.1007/11758501_67

    Article  Google Scholar 

  43. Braun DJ, Goldfarb M (2009) Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput Methods Appl Mech Eng 198:3151–3160. https://doi.org/10.1016/j.cma.2009.05.013

    Article  MathSciNet  Google Scholar 

  44. Nada A, Bayoumi M (2023) Development of a constraint stabilization method of multibody systems based on fuzzy logic control. Multibody Syst Dyn. https://doi.org/10.1007/s11044-023-09921-9

    Article  Google Scholar 

  45. Laulusa A, Bauchau OA (2008) Review of Classical Approaches for Constraint Enforcement in Multibody Systems. J Comput Nonlinear Dyn. https://doi.org/10.1115/1.2803257

    Article  Google Scholar 

  46. Bauchau OA, Laulusa A (2008) Review of contemporary approaches for constraint enforcement in multibody systems. J Comput Nonlinear Dyn. https://doi.org/10.1115/1.2803258

    Article  Google Scholar 

  47. Aghdam MM, Haghi P, Fallah A (2015) Nonlinear initial value ordinary differential equations. Nonlinear Approaches Eng Appl. https://doi.org/10.1007/978-3-319-09462-5_5

    Article  Google Scholar 

  48. Heydarpour Y, Aghdam MM (2016) A hybrid Bézier based multi-step method and differential quadrature for 3D transient response of variable stiffness composite plates. Compos Struct 154:344–359. https://doi.org/10.1016/j.compstruct.2016.07.060

    Article  Google Scholar 

  49. Heydarpour Y, Aghdam MM (2016) A novel hybrid Bézier based multi-step and differential quadrature method for analysis of rotating FG conical shells under thermal shock. Compos Part B Eng 97:120–140. https://doi.org/10.1016/j.compositesb.2016.04.055

    Article  Google Scholar 

  50. Kabir H, Aghdam MM (2019) A robust Bézier based solution for nonlinear vibration and post-buckling of random checkerboard graphene nano-platelets reinforced composite beams. Compos Struct 212:184–198. https://doi.org/10.1016/j.compstruct.2019.01.041

    Article  Google Scholar 

  51. Kabir H, Aghdam MM (2021) A generalized 2D Bézier-based solution for stress analysis of notched epoxy resin plates reinforced with graphene nanoplatelets. Thin-Walled Struct. 169:108484. https://doi.org/10.1016/j.tws.2021.108484

    Article  Google Scholar 

  52. Gerald CF, Wheatley PO (1999) Applied numerical analysis. Addison-Wesley, Reading

    Google Scholar 

  53. Farin G (2002) Curves and surfaces for CAGD. A practical guide, 5th edn. Elsevier Ltd, San Francisco, p 2002

    Google Scholar 

  54. Roupa I, Gonçalves SB, da Silva MT (2023) Kinematics and dynamics of planar multibody systems with fully Cartesian coordinates and a generic rigid body. Mech Mach Theory. https://doi.org/10.1016/j.mechmachtheory.2022.105134

    Article  Google Scholar 

  55. Ruggiu M, González F (2023) A benchmark problem with singularities for multibody system dynamics formulations with constraints. Multibody Syst Dyn 58:181–196. https://doi.org/10.1007/s11044-023-09896-7

    Article  MathSciNet  Google Scholar 

  56. García de Jalón J, Gutiérrez-López MD (2013) Multibody dynamics with redundant constraints and singular mass matrix: Existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst Dyn. https://doi.org/10.1007/s11044-013-9358-7

    Article  MathSciNet  Google Scholar 

  57. Ogata K (1995) Discrete-time control systems, 2nd edn. Prentice-Hall, Prentice

    Google Scholar 

  58. Polyanin AD, Zaitsev VF (2003) Handbook of exact solutions for ordinary differential equations, 2nd edn. Chapman and Hall/CRC Press, Boca Raton

    Google Scholar 

  59. Franklin GF, Powell JD, Emami-Naeini A (1994) Feedback control of dynamic systems, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  60. Nikravesh PE (2007) Initial condition correction in multibody dynamics. Multibody Syst Dyn. https://doi.org/10.1007/s11044-007-9069-z

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Azimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For the slider-crank mechanism mentioned in Sect. 5, the mass matrix can be defined as

$$\mathbf{M}=\mathrm{diag}\left(\begin{array}{ccccc}{J}_{1}& {m}_{2}& {m}_{2}& {J}_{2}& {m}_{3}\end{array}\right)$$
(20)

where \({J}_{1}\) and \({J}_{2}\) represent the mass moment of inertia for bodies 1 and 2, respectively, and \({m}_{2}\) and \({m}_{3}\) indicate masses of bodies 2 and 3. The corresponding constraint Jacobian matrix, vector \({\varvec{\upgamma}}\) and vector \(\mathbf{g}\) are expressed as

$${\mathbf{C}}_{\mathbf{q}}=\left[\begin{array}{ccccc}-{l}_{1}\mathrm{sin}{\theta }_{1}& -1& 0& -\frac{{l}_{2}}{2}\mathrm{sin}{\theta }_{2}& 0\\ {l}_{1}\mathrm{cos}{\theta }_{1}& 0& -1& \frac{{l}_{2}}{2}\mathrm{cos}{\theta }_{2}& 0\\ 0& 1& 0& -\frac{{l}_{2}}{2}\mathrm{sin}{\theta }_{2}& -1\\ 0& 0& 1& \frac{{l}_{2}}{2}\mathrm{cos}{\theta }_{2}& 0\end{array}\right]$$
(21)
$${\varvec{\upgamma}}=\left[\begin{array}{c}{l}_{1}\mathrm{cos}{\theta }_{1}{\dot{{\theta }_{1}}}^{2}+\frac{{l}_{2}}{2}\mathrm{cos}{\theta }_{2}{\dot{{\theta }_{2}}}^{2}\\ {l}_{1}\mathrm{sin}{\theta }_{1}{\dot{{\theta }_{1}}}^{2}+\frac{{l}_{2}}{2}\mathrm{sin}{\theta }_{2}{\dot{{\theta }_{2}}}^{2}\\ \frac{{l}_{2}}{2}\mathrm{cos}{\theta }_{2}{\dot{{\theta }_{2}}}^{2}\\ \frac{{l}_{2}}{2}\mathrm{sin}{\theta }_{2}{\dot{{\theta }_{2}}}^{2}\end{array}\right]$$
(22)
$$\mathbf{g}={\left[\begin{array}{ccccc}0& 0& {m}_{2}g& 0& 0\end{array}\right]}^{\mathrm{T}}$$
(23)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshnazar, M., Dastranj, M., Azimi, A. et al. Application of the Bezier integration technique with enhanced stability in forward dynamics of constrained multibody systems with Baumgarte stabilization method. Engineering with Computers 40, 1559–1573 (2024). https://doi.org/10.1007/s00366-023-01884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-023-01884-x

Keywords