Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A novel key performance analysis method for permanent magnet coupler using physics-informed neural networks

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The non-contact transmission product permanent magnet coupler (PMC) has been widely used in industry due to its advantages such as low noise and vibration, high efficiency, high reliability, and overload protection. Owing to its complex electromagnetic behaviors, the accurate computation of key performances such as magnetic vector potential and torque is essential for optimizing its transmission efficiency. However, traditional calculation methods are based on analytical or simulation models, either imprecise or computationally intensive, hindering subsequent optimization design modeling. To address the above issue, this paper proposes a novel method based on physical-informed neural networks (PINN) to calculate the PMC performances with high accuracy and low computational cost. PINN integrates prior knowledge into the deep neural network’s loss functions to establish the model and accurately predict the PMC’s performance parameters. Experimental results demonstrate that PINN outperforms traditional calculation methods regarding feasibility, validity, and accuracy. Overall, PINN combines data-driven models with prior knowledge to achieve a data–knowledge dual driven, providing a new approach for optimizing PMC structure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data used for this study is available on request to the authors.

Abbreviations

\(\,\,\varvec{A}\) :

Magnetic vector potential vector (Wb/m)

A :

Magnetic vector potential (Wb/m)

\(\,\,\varvec{B}\) :

Magnetic induction vector (T)

\(B_r\) :

Residual magnetic induction (T)

F :

Electromagnetic force (N)

g :

Thickness of air gap (m)

\(\,\,\varvec{H}\) :

Magnetic field intensity vector (A/m)

\(\,\,\varvec{J}\) :

Current density vector (\(A/m^2\))

k :

Correction factor

\(k_\textrm{th}\) :

The K-th hidden layer of the neural network

K :

The number of hidden layers in a neural network

\(\,\,\varvec{M}\) :

Magnetization vector (A/m)

\(\,\,\varvec{M}_r\) :

Remanence magnetization vector (A/m)

\(N_r,N_u\) :

The corresponding number of sampling points

n :

The number of harmonic order

\(n_1\) :

Input rotation speed of permanent magnet rotor (rpm/min)

\(n_2\) :

Output rotation speed of conductor rotor (rpm/min)

p :

Number of pole pairs

r :

True value of the governing equations

\({\hat{r}}\) :

Predicted value of the governing equations

\(r_1\) :

Thickness of PM yoke iron (m)

\(r_2\) :

Thickness of PM (m)

\(r_3\) :

Thickness of copper layer (m)

\(r_4\) :

Thickness of copper layer yoke iron (m)

\(r_m\) :

Average radius (m)

\(\gamma _m,\gamma _{cm}\) :

Dimensionless number

s :

Slip

t :

Time (s)

T :

Torque (N.m)

\(\tau _m\) :

Mean pole-arc length (m)

\(\tau _p\) :

Mean pole pitch (m)

u :

True value of the boundary conditions

\({\hat{u}}\) :

Predicted value of the boundary conditions

\(\mu _0\) :

Vacuum permeability (H/m)

\(\mu _x\) :

PM permeability (H/m)

\(\mu _{av}\) :

PM yoke iron permeability (H/m)

\(\mu _{eq}\) :

Copper layer yoke iron permeability (H/m)

\(\omega _1\) :

Angular velocity of the primary (rad/s)

\(\omega _c\) :

Width of copper layer (m)

\(\omega _m\) :

Width of PM (m)

x :

Two-dimensional model of PMC at x-direction distance (m)

y :

Two-dimensional model of PMC at y-direction distance (m)

\(y_1-y_6\) :

Six boundaries of PM two-dimensional model (m)

\(\sigma\) :

Conductivity (S/m)

\(\sigma _1\) :

Copper layer conductivity (S/m)

\(\sigma _2\) :

Copper layer yoke iron conductivity (S/m)

\({\tilde{M}}_n\) :

N-th harmonic order phasor form of magnetization (S/m)

\(\nabla \times \,\,\varvec{A}\) :

Curl of vector field

\(\partial\) :

Partial differential symbol

\(w^k\) :

Neural network weights of the \(k_\textrm{th}\) layer

\(b^k\) :

Neural network bias terms of the \(k_\textrm{th}\) layer

\(\lambda\) :

Unknown parameters of PDEs system

\(\,\,\varvec{x}\) :

The independent variable vector of PDEs system

\({\Phi }\) :

The independent variable vector of PDEs system

References

  1. Granados-Miralles C, Jenuš P (2021) On the potential of hard ferrite ceramics for permanent magnet technology—a review on sintering strategies. J Phys D Appl Phys 54(30):303001

    Google Scholar 

  2. Zou J, Zhao M, Wang Q, Zou J, Wu G (2012) Development and analysis of tubular transverse flux machine with permanent-magnet excitation. IEEE Trans Ind Electron 59(5):2198–2207

    Google Scholar 

  3. Canova A, Vusini B (2003) Design of axial eddy-current couplers. IEEE Trans Ind Appl 39(3):725–733

    Google Scholar 

  4. Canova A, Vusini B (2005) Analytical modeling of rotating eddy-current couplers. IEEE Transa Magn 41(1):24–35

    Google Scholar 

  5. Virtič P, Vražić M, Papa G (2015) Design of an axial flux permanent magnet synchronous machine using analytical method and evolutionary optimization. IEEE Trans Energy Convers 31(1):150–158

    Google Scholar 

  6. Akiki P, Hassan MH, Bensetti M, Dessante P, Vannier J-C, Prieto D, McClelland M (2018) Multiphysics design of a v-shape ipm motor. IEEE Trans Energy Convers 33(3):1141–1153

    Google Scholar 

  7. Mohammadi S, Mirsalim M (2013) Double-sided permanent-magnet radial-flux eddy-current couplers: three-dimensional analytical modeling, static and transient study, and sensitivity analysis. IET Electric Power Appl 7(9):665–679

    Google Scholar 

  8. Mohammadi S, Mirsalim M, Vaez-Zadeh S (2013) Nonlinear modeling of eddy-current couplers. IEEE Trans Energy Convers 29(1):224–231

    Google Scholar 

  9. Wang J, Zhu J (2018) A simple method for performance prediction of permanent magnet eddy current couplings using a new magnetic equivalent circuit model. IEEE Trans Ind Electron 65(3):2487–2495

    Google Scholar 

  10. Telezing BJK, Yang C, Ombolo PD, Peng Z, Tai J, Zhu L (2022) Torque characteristics analysis of a novel hybrid superconducting magnetic coupling with axial-flux using a magnetic equivalent circuit model. IEEE Access 10:45594–45604

    Google Scholar 

  11. Belguerras L, Mezani S, Lubin T (2020) Analytical modeling of an axial field magnetic coupler with cylindrical magnets. IEEE Trans Magn 57(2):1–5

    Google Scholar 

  12. Lubin T, Rezzoug A (2014) Steady-state and transient performance of axial-field eddy-current coupling. IEEE Trans Ind Electron 62(4):2287–2296

    Google Scholar 

  13. Lubin T, Rezzoug A (2015) 3-d analytical model for axial-flux eddy-current couplings and brakes under steady-state conditions. IEEE Trans Magn 51(10):1–12

    Google Scholar 

  14. Aberoomand V, Mirsalim M, Fesharakifard R (2019) Design optimization of double-sided permanent-magnet axial eddy-current couplers for use in dynamic applications. IEEE Trans Energy Conv 34(2):909–920

    Google Scholar 

  15. Wang J (2021) A generic 3-d analytical model of permanent magnet eddy-current couplings using a magnetic vector potential formulation. IEEE Trans Ind Electron 69(1):663–672

    Google Scholar 

  16. Potgieter JH, Kamper MJ (2014) Optimum design and comparison of slip permanent-magnet couplings with wind energy as case study application. IEEE Trans IndApplications 50(5):3223–3234

    Google Scholar 

  17. Petković B, Dölker E-M, Schmidt R, Haueisen J (2018) Method of fundamental solutions applied to 3-d velocity induced eddy current problems. IEEE Trans Magn 54(8):1–10

    Google Scholar 

  18. Wang L, Jia Z, Zhang L (2019) Investigation on the accurate calculation of the temperature field of permanent magnet governor and the optimization method of heat conduction. Case Stud Thermal Eng 13:100360

    Google Scholar 

  19. Erasmus AS, Kamper MJ (2017) Computationally efficient analysis of double pm-rotor radial-flux eddy current couplers. IEEE Trans Ind Appl 53(4):3519–3527

    Google Scholar 

  20. Chakraborty S, Chatterjee T, Chowdhury R, Adhikari S (2017) A surrogate based multi-fidelity approach for robust design optimization. Appl Math Model 47:726–744

    MathSciNet  Google Scholar 

  21. Kashani SAA (2021) Design and optimization of coaxial reluctance magnetic gear with different rotor topologies. IEEE Trans Ind Electron 69(1):101–109

    MathSciNet  Google Scholar 

  22. Li Z, Wang D, Zheng D (2018) Accurate prediction and analysis of electromagnetic fields and forces in flux-focusing eddy current coupling with double slotted conductor rotors. IEEE Access 6:37685–37699

    Google Scholar 

  23. Song I-S, Jo B-W, Kim K-C (2021) Analysis of an ipmsm hybrid magnetic equivalent circuit. Energies 14(16):5011

    Google Scholar 

  24. Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561

  25. Raissi M, Perdikaris P, Karniadakis GE (2017) Physics informed deep learning (part ii): Data-driven discovery of nonlinear partial differential equations. arXiv preprint arXiv:1711.10566

  26. Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000

    Google Scholar 

  27. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18:1–43

    MathSciNet  Google Scholar 

  28. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch: An imperative style, high-performance deep learning library. Adv Neural Inform process Syst 32

  29. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al. (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467

  30. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput phys 378:686–707

    MathSciNet  Google Scholar 

  31. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Google Scholar 

  32. Okazaki T, Ito T, Hirahara K, Ueda N (2022) Physics-informed deep learning approach for modeling crustal deformation. Nat Commun 13(1):7092

    Google Scholar 

  33. Tripathy RK, Bilionis I (2018) Deep uq: learning deep neural network surrogate models for high dimensional uncertainty quantification. J Comput Phys 375:565–588

    MathSciNet  Google Scholar 

  34. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440

    Google Scholar 

  35. Zhang E, Dao M, Karniadakis GE, Suresh S (2022) Analyses of internal structures and defects in materials using physics-informed neural networks. Sci Adv 8(7):0644

    Google Scholar 

  36. Han J, Jentzen A, E W (2018) Solving high-dimensional partial differential equations using deep learning. Proc Natl Acad Sci 115(34):8505–8510

    MathSciNet  Google Scholar 

  37. Lu L, Meng X, Mao Z, Karniadakis GE (2021) Deepxde: a deep learning library for solving differential equations. SIAM Review 63(1):208–228

    MathSciNet  Google Scholar 

  38. Xue Y, Li Y, Zhang K, Yang F (2022) A physics-inspired neural network to solve partial differential equations-application in diffusion-induced stress. Phys Chem Chem Phys 24(13):7937–7949

    Google Scholar 

  39. Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis GE (2021) Physics-informed neural networks for heat transfer problems. J Heat Transfer 143(6)

  40. Li R, Wang J-X, Lee E, Luo T (2022) Physics-informed deep learning for solving phonon boltzmann transport equation with large temperature non-equilibrium. NPJ Comput Mater 8(1):29

    Google Scholar 

  41. Gokhale G, Claessens B, Develder C (2022) Physics informed neural networks for control oriented thermal modeling of buildings. Appl Energy 314:118852

    Google Scholar 

  42. Goswami S, Yin M, Yu Y, Karniadakis GE (2022) A physics-informed variational deeponet for predicting crack path in quasi-brittle materials. Comput Methods Appl Mech Eng 391:114587

    MathSciNet  Google Scholar 

  43. Anton D, Wessels H (2022) Physics-informed neural networks for material model calibration from full-field displacement data. arXiv preprint arXiv:2212.07723

  44. Haghighat E, Raissi M, Moure A, Gomez H, Juanes R (2021) A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng 379:113741

    MathSciNet  Google Scholar 

  45. Abueidda DW, Lu Q, Koric S (2021) Meshless physics-informed deep learning method for three-dimensional solid mechanics. Int J Numer Methods Eng 122(23):7182–7201

    MathSciNet  Google Scholar 

  46. Bai J, Rabczuk T, Gupta A, Alzubaidi L, Gu Y (2023) A physics-informed neural network technique based on a modified loss function for computational 2d and 3d solid mechanics. Computat Mech 71(3):543–562

    MathSciNet  Google Scholar 

  47. Raissi M, Yazdani A, Karniadakis GE (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030

    MathSciNet  Google Scholar 

  48. Kissas G, Yang Y, Hwuang E, Witschey WR, Detre JA, Perdikaris P (2020) Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4d flow mri data using physics-informed neural networks. Comput Methods Appl Mech Eng 358:112623

    MathSciNet  Google Scholar 

  49. Mahmoudabadbozchelou M, Caggioni M, Shahsavari S, Hartt WH, Em Karniadakis G, Jamali S (2021) Data-driven physics-informed constitutive metamodeling of complex fluids: a multifidelity neural network (mfnn) framework. J Rheol 65(2):179–198

    Google Scholar 

  50. Jin X, Cai S, Li H, Karniadakis GE (2021) Nsfnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations. J Comput Phys 426:109951

    MathSciNet  Google Scholar 

  51. Bararnia H, Esmaeilpour M (2022) On the application of physics-informed neural networks (pinn) to solve boundary layer thermal-fluid problems. Int Commun Heat Mass Transfer 132:105890

    Google Scholar 

  52. Chen Y, Lu L, Karniadakis GE, Dal Negro L (2020) Physics-informed neural networks for inverse problems in nano-optics and metamaterials. Opt Express 28(8):11618–11633

    Google Scholar 

  53. Beltrán-Pulido A, Bilionis I, Aliprantis D (2022) Physics-informed neural networks for solving parametric magnetostatic problems. IEEE Trans Energy Convers 37(4):2678–2689

    Google Scholar 

  54. Khan A, Lowther DA (2022) Physics informed neural networks for electromagnetic analysis. IEEE Trans Magn 58(9):1–4

    Google Scholar 

  55. Mušeljić E, Reinbacher-Köstinger A, Kaltenbacher M (2022) Solving the electrostatic laplace’s equation with a parameterizable physics informed neural network. In: 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), pp. 1–2 . IEEE

  56. Wang J, Lin H, Fang S, Huang Y (2013) A general analytical model of permanent magnet eddy current couplings. IEEE Trans Magn 50(1):1–9

    Google Scholar 

  57. Dai X, Liang Q, Cao J, Long Y, Mo J, Wang S (2015) Analytical modeling of axial-flux permanent magnet eddy current couplings with a slotted conductor topology. IEEE Trans Magn 52(2):1–15

    Google Scholar 

  58. Barletta G, Cianchi A, Marino G (2023) Boundedness of solutions to dirichlet, neumann and robin problems for elliptic equations in orlicz spaces. Calc Variati Part Differ Equ 62(2):65

    MathSciNet  Google Scholar 

  59. Edwards J, Jayawant B, Dawson W, Wright D (1999) Permanent-magnet linear eddy-current brake with a non-magnetic reaction plate. IEE Proc Electric Power Appl 146(6):627–631

    Google Scholar 

  60. Eastham F, Cox T, Leonard P, Proverbs J (2008) Linear induction motors with modular winding primaries and wound rotor secondaries. IEEE Trans Magn 44(11):4033–4036

    Google Scholar 

  61. Russell R, Norsworthy K (1958) Eddy currents and wall losses in screened-rotor induction motors. Proc IEE-Part A Power Eng 105(20):163–175

    Google Scholar 

  62. Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE (2019) Deep learning of vortex-induced vibrations. J Fluid Mech 861:119–137

    MathSciNet  Google Scholar 

  63. Sitzmann V, Martel J, Bergman A, Lindell D, Wetzstein G (2020) Implicit neural representations with periodic activation functions. Adv Neural Inform Process Syst 33:7462–7473

    Google Scholar 

  64. Jagtap AD, Kawaguchi K, Karniadakis GE (2020) Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J Comput Phys 404:109136

    MathSciNet  Google Scholar 

  65. Manikkan S, Srinivasan B (2022) Transfer physics informed neural network: a new framework for distributed physics informed neural networks via parameter sharing. Eng Comput:1–28. https://doi.org/10.1007/s00366-022-01703-9

  66. Pang G, Lu L, Karniadakis GE (2019) fpinns: fractional physics-informed neural networks. SIAM J Sci Comput 41(4):2603–2626

    MathSciNet  Google Scholar 

  67. Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732

    MathSciNet  Google Scholar 

  68. Batuwatta-Gamage C, Rathnayaka C, Karunasena HCP, Wijerathne W, Jeong H, Welsh Z, Karim M, Gu Y (2022) A physics-informed neural network-based surrogate framework to predict moisture concentration and shrinkage of a plant cell during drying. J Food Eng 332:111137

    Google Scholar 

  69. Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tangsali K, Rietmann M, Choudhry S (2020) An end-to-end ai-driven simulation framework. In: Workshop: Machine Learning and the Physical Sciences, the 34th Conference on Neural Information Processing Systems

  70. Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tangsali K, Fang Z, Rietmann M, Byeon W, Choudhry S (2021) Nvidia simnet\(^{\rm TM}\): An ai-accelerated multi-physics simulation framework. In: Computational Science–ICCS 2021: 21st International Conference, Krakow, Poland, June 16–18, 2021, Proceedings, Part V, pp. 447–461. Springer

  71. Mai HT, Mai DD, Kang J, Lee J, Lee J (2023) Physics-informed neural energy-force network: a unified solver-free numerical simulation for structural optimization. Engineering with Computers: 1–24. https://doi.org/10.1007/s00366-022-01760-0

  72. Gatta F, Di Cola VS, Giampaolo F, Piccialli F, Cuomo S (2023) Meshless methods for American option pricing through physics-informed neural networks. Eng Anal Bound Elements 151:68–82

    MathSciNet  Google Scholar 

  73. Mishra S, Molinaro R (2022) Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for pdes. IMA J Numer Anal 42(2):981–1022

    MathSciNet  Google Scholar 

Download references

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 52105244), Fundamental Research Funds for the Central Universities (Grant No. 02090052020106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yi.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, H., Tan, B., Yi, J. et al. A novel key performance analysis method for permanent magnet coupler using physics-informed neural networks. Engineering with Computers 40, 2259–2277 (2024). https://doi.org/10.1007/s00366-023-01914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-023-01914-8

Keywords