Abstract
Recently, a precomputed shadow fields method was proposed for achieving fast rendering of dynamic scenes under environment illumination and local light sources. This method can render shadows fast by precomputing the occlusion information at many sample points arranged on concentric shells around each object and combining multiple precomputed occlusion information rapidly in the rendering step. However, this method uses the same number of sample points on all shells, and cannot achieve real-time rendering due to the rendering computation rely on CPU rather than graphics hardware. In this paper, we propose an algorithm for decreasing the data size of shadow fields by reducing the amount of sample points without degrading the image quality. We reduce the number of sample points adaptively by considering the differences of the occlusion information between adjacent sample points. Additionally, we also achieve fast rendering under low-frequency illuminations by implementing shadow fields on graphics hardware.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agrawala, M., Ramamoorthi, R., Heirich, A., Moll, L.: Efficient image-based methods for rendering soft shadows. In: Proc. SIGGRAPH 2000, pp. 375–384 (2000)
Akenine-Moller, T., Assarsson, U.: Shading and shadows: Approximate soft shadows on arbitrary surfaces using penumbra wedges. In: Proc. 13th Eurographics Workshop on Rendering, pp. 297–306 (2002)
Assarsson, U., Akenine-Moller, T.: A geometry-based soft shadow volume algorithm using graphics hardware. ACM Trans. Graph. 22(3), 511–520 (2003)
Crow, F.C.: Shadow algorithms for computer graphics. In: Proc. SIGGRAPH 77, pp. 242–248 (1977)
Dobashi, Y., Kaneda, K., Yamashita, H., Nishita, T.: A quick rendering method for outdoor scenes using sky light luminance functions expressed with basis functions. J. Inst. Image Elec. Engin. Jap. 24(3), 196–205 (1995)
Heckbert, P.S., Herf, M.: Simulating soft shadows with graphics hardware (1997). Technical report CMU-CS-97-104, Carnegie Mellon University, January 1997
Heidrich, W., Brabec, S., Seidel, H.P.: Soft shadow maps for linear lights. In: Proc. 11th Eurographics Workshop on Rendering, pp. 269–280 (2000)
James, D.L., Fatahalian, K.: Precomputing interactive dynamic deformable scenes. ACM Trans. Graph. 22(3), 879–887 (2003)
Kautz, J., Lehtinen, J., Aila, T.: Hemispherical rasterization for self-shadowing of dynamic objects. In: Proc. Eurographics Symposium on Rendering 2004, pp. 179–184 (2004)
Kautz, J., Sloan, P.P., Snyder, J.: Shading and shadows: Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In: Proc. 13th Eurographics Workshop on Rendering, pp. 291–296 (2002)
Kilgard, M.J. (ed.): nVIDIA OpenGL Extension Specifications. nVIDIA Corporation (2004)
Kontkanen, J., Laine, S.: Ambient occlusion fields. In: Proc. Symposium on Interactive 3D Graphics and Games 2005, pp. 41–48 (2005)
Laine, S., Aila, T., Assarsson, U., Lehtinen, J., Akenine-Moller, T.: Soft shadow volumes for ray tracing. ACM Trans. Graph. 24(3), 1156–1165 (2005)
Lehtinen, J., Kautz, J.: Matrix radiance transfer. In: Proc. Symposium on Interactive 3D Graphics 2003, pp. 59–64 (2003)
Mei, C., Shi, J., Wu, F.: Rendering with spherical radiance transport maps. Comput. Graph. Forum 23(3), 281–290 (2004)
Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)
Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23(3), 477–487 (2004)
Nishita, T., Nakamae, E.: Continuous tone representation of three-dimensional objects taking account of shadows and interreflection. In: Proc. SIGGRAPH 85, pp. 23–30 (1985)
Nishita, T., Nakamae, E.: Continuous tone representation of three- dimensional objects illuminated by sky light. In: Proc. SIGGRAPH 86, pp. 125–132 (1986)
Nishita, T., Okamura, I., Nakamae, E.: Shading models for point and linear sources. ACM Trans. Graph. 4(2), 124–146 (1985)
Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proc. SIGGRAPH 2001, pp. 497–500 (2001)
Sloan, P.P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22(3), 382–391 (2003)
Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proc. SIGGRAPH 2002, pp. 527–536 (2002)
Sloan, P.P., Liu, X., Shum, H.Y., Snyder, J.: Bi-scale radiance transfer. ACM Trans. Graph. 22(3), 370–375 (2003)
Soler, C., Sillion, F.X.: Fast calculation of soft shadow textures using convolution. In: Proc. SIGGRAPH 98, pp. 321–332 (1998)
Tamura, N., Johan, H., Nishita, T.: Deferred shadowing for real-time rendering of dynamic scenes under environment illumination. Comput. Anim. Virtual World 16, 475–486 (2005)
Williams, L.: Casting curved shadows on curved surfaces. In: Proc. SIGGRAPH 78, pp. 270–274 (1978)
Zhou, K., Hu, Y., Lin, S., Guo, B., Shum, H.Y.: Precomputed shadow fields for dynamic scenes. ACM Trans. Graph. 24(3), 1196–1201 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tamura, N., Johan, H., Chen, BY. et al. A practical and fast rendering algorithm for dynamic scenes using adaptive shadow fields. Visual Comput 22, 702–712 (2006). https://doi.org/10.1007/s00371-006-0056-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-006-0056-9