Abstract
With the increasing amount of 3D data and the ability of capture devices to produce low-cost multimedia data, the capability to select relevant information has become an interesting research field. In 3D objects, the aim is to detect a few salient structures which can be used, instead of the whole object, for applications like object registration, retrieval, and mesh simplification. In this paper, we present an interest points detector for 3D objects based on Harris operator, which has been used with good results in computer vision applications. We propose an adaptive technique to determine the neighborhood of a vertex, over which the Harris response on that vertex is calculated. Our method is robust to several transformations, which can be seen in the high repeatability values obtained using the SHREC feature detection and description benchmark. In addition, we show that Harris 3D outperforms the results obtained by recent effective techniques such as Heat Kernel Signatures.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Sipiran, I., Ovsjanikov, M., Patane, G., Spagnuolo, M., Sun, J.: SHREC 2010: Robust feature detection and description benchmark. In: Proc. Eurographics Workshop on 3D Object Retrieval, pp. 79–86. Eurographics Association, Aire-la-Ville (2010)
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)
Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. Comput. Graph. Forum 27(2), 643–652 (2008)
Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. SIGGRAPH ’97, pp. 209–216. ACM Press/Addison-Wesley, New York (1997)
Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proc. Eurographics Symposium on Geometry Processing, p. 197. Eurographics Association, Aire-la-Ville (2005)
Glomb, P.: Detection of interest points on 3D data: Extending the Harris operator. In: Computer Recognition Systems 3. Advances in Soft Computing, vol. 57, pp. 103–111. Springer, Berlin (2009)
Harris, C., Stephens, M.: A combined corner and edge detection. In: Proc. of The Fourth Alvey Vision Conference, pp. 147–151 (1988)
Ho, H., Gibbins, D.: Curvature-based approach for multi-scale feature extraction from 3D meshes and unstructured point clouds. IET Comput. Vis. 3(4), 201 (2009)
Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)
Hua, J., Lai, Z., Dong, M., Gu, X., Qin, H.: Geodesic distance-weighted shape vector image diffusion. IEEE Trans. Vis. Comput. Graph. 14(6), 1643–1650 (2008)
Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8), 649–658 (2005)
Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)
Laptev, I., Pérez, P.: Retrieving actions in movies. In: Int. Conf. in Comput. Vis, pp. 1–8 (2007)
Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. SIGGRAPH ’05, pp. 659–666. ACM, New York (2005)
Liu, Y., Zha, H., Qin, H.: Shape topics: A compact representation and new algorithms for 3D partial shape retrieval. In: Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit. CVPR ’06, pp. 2025–2032. IEEE Computer Society, Washington (2006)
Loog, M., Lauze, F.: The improbability of Harris interest points. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1141–1147 (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis., Special Issue on 3D Object Retrieval (2009)
Mikolajczyk, K.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)
Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: Proc. Int. Conf. on Comput. Vis., pp. 1–8. IEEE, New York (2007)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)
Shilane, P., Funkhouser, T.: Selecting distinctive 3D shape descriptors for similarity retrieval. In: Proc. IEEE Int. Conf. on Shape Model. and Appl. SMI ’06, Washington, DC, USA, p. 18 (2006)
Sipiran, I., Bustos, B.: A robust 3D interest points detector based on Harris operator. In: Proc. Eurographics Workshop on 3D Object Retrieval, pp. 7–14. Eurographics Association, Aire-la-Ville (2010)
Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)
Tierny, J., Vandeborre, J.P., Daoudi, M.: Enhancing 3D mesh topological skeletons with discrete contour constrictions. Vis. Comput. 24(3), 155–172 (2008)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.P.: Surface feature detection and description with applications to mesh matching. In: Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit. CVPR ’09, Miami Beach, Florida (2009)
Zou, G., Hua, J., Dong, M., Qin, H.: Surface matching with salient keypoints in geodesic scale space. Comput. Animat. Virtual Worlds 19(3–4), 399–410 (2008)
Zou, G., Hua, J., Lai, Z., Gu, X., Dong, M.: Intrinsic geometric scale space by shape diffusion. IEEE Trans. Vis. Comput. Graph. 15(6), 1193–1200 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sipiran, I., Bustos, B. Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis Comput 27, 963–976 (2011). https://doi.org/10.1007/s00371-011-0610-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0610-y