Abstract
In this paper, we tackle the problem of associating combinations of colors to abstract concepts (e.g. capricious, classic, cool, delicate, etc.). Since such concepts are difficult to represent using single colors, we consider combinations of colors or color palettes. We leverage two novel databases for color palettes, and learn categorization models using both low and high level descriptors. It is shown that the Bag of Colors and Fisher Vectors are the most rewarding descriptors for palettes categorization and retrieval.
A simple but novel and efficient method for cleaning weakly annotated data, whilst preserving the visual coherence of categories is also given.
Finally, we demonstrate that abstract category models learned on color palettes can be used in different applications such as image personalization, concept-based palette, and image retrieval and color transfer.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color naming. J. Opt. Soc. Am. A 25(10), 2582–2593 (2008)
Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. University of California Press, Berkeley (1969)
Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Ying-Qing, X.: Color harmonization. In: Proceedings of ACM SIGGRAPH, vol. 25, pp. 624–630 (2006)
Conway, D.: An experimental comparison of three natural language colour naming models. In: East-West International Conference on Human-Computer Interactions, pp. 328–339 (1992)
Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning for Computer Vision (2004)
Csurka, G., Skaff, S., Marchesotti, L., Saunders, C.: Learning moods and emotions from color combinations. In: Indian Conference on Computer Vision, Graphics and Image Processing (2010)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: European Conference on Computer Vision, vol. 3, pp. 288–301 (2006)
Datta, R., Li, J., Wang, J.Z.: Algorithmic inferencing of aesthetics and emotion in natural images. In: IEEE International Conference on Image Processing, San Diego, CA, October 2008
Davis, B.C., Lazebnik, S.: Analysis of human attractiveness using manifold kernel regression. In: IEEE International Conference on Image Processing (2008)
Eiseman, L.: Pantone Guide to Communicating with Color. Graffix Press, Ltd. (2000)
Farquhar, J., Szedmak, S., Meng, H., Shawe-Taylor, J.: Improving “bag-of-keypoints” image categorisation. Technical report, University of Southampton (2005)
Fedorovskaya, E., Neustaedter, C., Wei, H.: Image harmony for consumer images. In: IEEE International Conference on Image Processing (2008). No hard copy
Greenfield, G.R., House, D.H.: A palette-driven approach to image color transfer. In: Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, Spain, pp. 91–99, May 2005
Hou, X., Zhang, L.: Color conceptualization. In: International Multimedia Conference, Augsburg, Germany, pp. 265–268 (2007)
Jacobsen, T., Schubotz, R.I., Höfel, L., Cramon, D.Y.V.: Brain correlates of aesthetic judgment of beauty. NeuroImage 29, 276–285 (2006)
Krishnapuram, B., Hartemink, A.J.: Sparse multinomial logistic regression: Fast algorithms and generalization bounds. PAMI 27(6) (2005)
Lammens, J.M.G.: A computational model of color perception and color naming. Ph.D. thesis, University of Buffalo (1994)
Ou, L.-C., Luo, M.R., Woodcock, A., Wright, A.: A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Res. Appl. 29(3), 232–240 (2004)
Ou, L.C., Luo, M.R., Woodcock, A., Wright, A.: A study of colour emotion and colour preference. Part III: Colour preference modeling. Color Res. Appl. 29, 381–389 (2004)
Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)
Perronnin, F., Dance, C., Csurka, G., Bressan, M.: Adapted vocabularies for generic visual categorization. In: ECCV (2006)
Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)
Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: ICCV (1998)
Skaff, S., Marchesotti, L., Csurka, G., Saunders, C.: A study on perceptually coherent distance measures for color schemes. In: Color and Imaging Conference (2011)
Solli, M., Lenz, R.: Color emotions for image classification and retrieval. In: CGIV (2008)
Solli, M., Lenz, R.: Color based bags-of-emotions. In: International Conference on Computer Analysis of Images and Patterns, vol. 5702, pp. 573–580 (2009)
Solli, M., Lenz, R.: Color harmony for image indexing. In: IEEE International Conference on Computer Vision Workshop, pp. 1885–1892 (2009)
Tai, Y.W., Jia, J., Tang, C.K.: Local color transfer via probabilistic segmentation by expectation-maximization. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 747–754 (2005)
van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)
Wang, B., Yu, Y., Wong, T.T., Chen, C., Xu, Y.-Q.: Data-driven image color theme enhancement. ACM Trans. Graph. (SIGGRAPH Asia 2010 issue) 29(6), 146:1–146:10 (2010)
Yang, C.-K., Peng, L.-K.: Automatic mood-transferring between color images. IEEE Comput. Graph. Appl. 28(2), 52–61 (2008)
Zhang, L., Chen, L., Jing, F., Deng, K., Ma, W.-Y.: Enjoyphoto—a vertical image search engine for enjoying high-quality photos. In: MM (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Csurka, G., Skaff, S., Marchesotti, L. et al. Building look & feel concept models from color combinations. Vis Comput 27, 1039–1053 (2011). https://doi.org/10.1007/s00371-011-0657-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0657-9