Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Building look & feel concept models from color combinations

With applications in image classification, retrieval, and color transfer

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we tackle the problem of associating combinations of colors to abstract concepts (e.g. capricious, classic, cool, delicate, etc.). Since such concepts are difficult to represent using single colors, we consider combinations of colors or color palettes. We leverage two novel databases for color palettes, and learn categorization models using both low and high level descriptors. It is shown that the Bag of Colors and Fisher Vectors are the most rewarding descriptors for palettes categorization and retrieval.

A simple but novel and efficient method for cleaning weakly annotated data, whilst preserving the visual coherence of categories is also given.

Finally, we demonstrate that abstract category models learned on color palettes can be used in different applications such as image personalization, concept-based palette, and image retrieval and color transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color naming. J. Opt. Soc. Am. A 25(10), 2582–2593 (2008)

    Article  Google Scholar 

  2. Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. University of California Press, Berkeley (1969)

    Google Scholar 

  3. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Ying-Qing, X.: Color harmonization. In: Proceedings of ACM SIGGRAPH, vol. 25, pp. 624–630 (2006)

    Google Scholar 

  4. Conway, D.: An experimental comparison of three natural language colour naming models. In: East-West International Conference on Human-Computer Interactions, pp. 328–339 (1992)

    Google Scholar 

  5. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV Workshop on Statistical Learning for Computer Vision (2004)

    Google Scholar 

  6. Csurka, G., Skaff, S., Marchesotti, L., Saunders, C.: Learning moods and emotions from color combinations. In: Indian Conference on Computer Vision, Graphics and Image Processing (2010)

    Google Scholar 

  7. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: European Conference on Computer Vision, vol. 3, pp. 288–301 (2006)

    Google Scholar 

  8. Datta, R., Li, J., Wang, J.Z.: Algorithmic inferencing of aesthetics and emotion in natural images. In: IEEE International Conference on Image Processing, San Diego, CA, October 2008

    Google Scholar 

  9. Davis, B.C., Lazebnik, S.: Analysis of human attractiveness using manifold kernel regression. In: IEEE International Conference on Image Processing (2008)

    Google Scholar 

  10. Eiseman, L.: Pantone Guide to Communicating with Color. Graffix Press, Ltd. (2000)

    Google Scholar 

  11. Farquhar, J., Szedmak, S., Meng, H., Shawe-Taylor, J.: Improving “bag-of-keypoints” image categorisation. Technical report, University of Southampton (2005)

  12. Fedorovskaya, E., Neustaedter, C., Wei, H.: Image harmony for consumer images. In: IEEE International Conference on Image Processing (2008). No hard copy

    Google Scholar 

  13. Greenfield, G.R., House, D.H.: A palette-driven approach to image color transfer. In: Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging, Girona, Spain, pp. 91–99, May 2005

    Google Scholar 

  14. Hou, X., Zhang, L.: Color conceptualization. In: International Multimedia Conference, Augsburg, Germany, pp. 265–268 (2007)

    Google Scholar 

  15. http://www.colourlovers.com/

  16. Jacobsen, T., Schubotz, R.I., Höfel, L., Cramon, D.Y.V.: Brain correlates of aesthetic judgment of beauty. NeuroImage 29, 276–285 (2006)

    Article  Google Scholar 

  17. Krishnapuram, B., Hartemink, A.J.: Sparse multinomial logistic regression: Fast algorithms and generalization bounds. PAMI 27(6) (2005)

  18. Lammens, J.M.G.: A computational model of color perception and color naming. Ph.D. thesis, University of Buffalo (1994)

  19. Ou, L.-C., Luo, M.R., Woodcock, A., Wright, A.: A study of colour emotion and colour preference. Part I: Colour emotions for single colours. Color Res. Appl. 29(3), 232–240 (2004)

    Article  Google Scholar 

  20. Ou, L.C., Luo, M.R., Woodcock, A., Wright, A.: A study of colour emotion and colour preference. Part III: Colour preference modeling. Color Res. Appl. 29, 381–389 (2004)

    Article  Google Scholar 

  21. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)

    Google Scholar 

  22. Perronnin, F., Dance, C., Csurka, G., Bressan, M.: Adapted vocabularies for generic visual categorization. In: ECCV (2006)

    Google Scholar 

  23. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  24. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: ICCV (1998)

    Google Scholar 

  25. Skaff, S., Marchesotti, L., Csurka, G., Saunders, C.: A study on perceptually coherent distance measures for color schemes. In: Color and Imaging Conference (2011)

    Google Scholar 

  26. Solli, M., Lenz, R.: Color emotions for image classification and retrieval. In: CGIV (2008)

    Google Scholar 

  27. Solli, M., Lenz, R.: Color based bags-of-emotions. In: International Conference on Computer Analysis of Images and Patterns, vol. 5702, pp. 573–580 (2009)

    Chapter  Google Scholar 

  28. Solli, M., Lenz, R.: Color harmony for image indexing. In: IEEE International Conference on Computer Vision Workshop, pp. 1885–1892 (2009)

    Chapter  Google Scholar 

  29. Tai, Y.W., Jia, J., Tang, C.K.: Local color transfer via probabilistic segmentation by expectation-maximization. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 747–754 (2005)

    Google Scholar 

  30. van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)

    Article  MathSciNet  Google Scholar 

  31. Wang, B., Yu, Y., Wong, T.T., Chen, C., Xu, Y.-Q.: Data-driven image color theme enhancement. ACM Trans. Graph. (SIGGRAPH Asia 2010 issue) 29(6), 146:1–146:10 (2010)

    Google Scholar 

  32. Yang, C.-K., Peng, L.-K.: Automatic mood-transferring between color images. IEEE Comput. Graph. Appl. 28(2), 52–61 (2008)

    Article  Google Scholar 

  33. Zhang, L., Chen, L., Jing, F., Deng, K., Ma, W.-Y.: Enjoyphoto—a vertical image search engine for enjoying high-quality photos. In: MM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Csurka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csurka, G., Skaff, S., Marchesotti, L. et al. Building look & feel concept models from color combinations. Vis Comput 27, 1039–1053 (2011). https://doi.org/10.1007/s00371-011-0657-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0657-9

Keywords