Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose an efficient algorithm that computes the Morse–Smale complex for 3D gray-scale images. This complex allows for an efficient computation of persistent homology since it is, in general, much smaller than the input data but still contains all necessary information. Our method improves a recently proposed algorithm to extract the Morse–Smale complex in terms of memory consumption and running time. It also allows for a parallel computation of the complex. The computational complexity of the Morse–Smale complex extraction solely depends on the topological complexity of the input data. The persistence is then computed using the Morse–Smale complex by applying an existing algorithm with a good practical running time. We demonstrate that our method allows for the computation of persistent homology for large data on commodity hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. The Institute of Computer Graphics and Algorithms. http://www.cg.tuwien.ac.at/research/vis/datasets/

  2. Volvis: Voxel Data Repository (2010). http://www.volvis.org/

  3. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discrete & Computational Geometry 47(2), 1–31

  4. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. Proc. - IEEE Conf. Inf. Vis. 16, 1251–1260 (2010)

    Google Scholar 

  5. Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1–3), 101–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C., Kerber, M.: An output-sensitive algorithm for persistent homology. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG ’11), pp. 207–216. ACM, New York (2011)

    Google Scholar 

  7. Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Comp. Geometry (EuroCG 2011) (2011)

    Google Scholar 

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathematical Society (2010)

  10. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forman, R.: A user’s guide to discrete Morse theory. In: Seminaire Lotharingien de Combinatoire, vol. B48c, pp. 1–35 (2002)

    Google Scholar 

  13. Günther, D., Reininghaus, J., Prohaska, S., Weinkauf, T., Hege, H.C.: Efficient computation of a hierarchy of discrete 3d gradient vector fields. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011), Zürich, Switzerland, April 4–6, pp. 15–30. Springer, Berlin (2012)

    Chapter  Google Scholar 

  14. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Memory efficient computation of persistent homology for 3D image data using discrete Morse theory. In: Lewiner, T., Torres, R. (eds.) Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI), Maceió, Los Alamitos, vol. 24, pp. 25–32. IEEE Press, New York (2011)

    Chapter  Google Scholar 

  15. Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practical approach to Morse–Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14, 1619–1626 (2008)

    Article  Google Scholar 

  16. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  17. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Math. Sciences, vol. 157. Springer, Berlin (2004)

    MATH  Google Scholar 

  18. Lewiner, T.: Geometric discrete Morse complexes. Ph.D. thesis, Dept. of Mathematics, PUC-Rio (2005)

  19. Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milnor, J.: Topology from the Differentiable Viewpoint. University of Virginia Press, Charlottesville (1965)

    MATH  Google Scholar 

  21. Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG ’11), pp. 216–225. ACM, New York (2011)

    Google Scholar 

  22. Morozov, D.: Persistence algorithm takes cubic time in the worst case. In: BioGeometry News. Duke Computer Science, Durhmam (2005)

    Google Scholar 

  23. Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 60, 2812–2833 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.C., TADD: A computational framework for data analysis using discrete Morse theory. In: Mathematical Software (ICMS 2010), pp. 198–208. Springer, Berlin (2010)

    Chapter  Google Scholar 

  25. Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  26. Röttger, S.: http://www9.informatik.uni-erlangen.de/External/vollib/

  27. Wagner, H., Chen, C., Vucini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011), Zürich, Switzerland, April 4–6, pp. 91–108. Springer, Berlin (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the MPI of Biochemistry, the MPI for Informatics, the DFG Emmy-Noether research program, and Foundation for Polish Science Geometry and Topology in Physical Models program. We thank Daniel Baum for providing the molecule data set. We also thank Herbert Edelsbrunner and Chao Chen for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Günther.

Appendix

Appendix

Let Ω=[−2,2]3. The function g:Ω→ℝ is given by

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, D., Reininghaus, J., Wagner, H. et al. Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory. Vis Comput 28, 959–969 (2012). https://doi.org/10.1007/s00371-012-0726-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0726-8

Keywords