Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ESLPV: enhanced subsurface light propagation volumes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present an enhanced subsurface light propagation volumes (ESLPV) method for real-time rendering of translucent materials. Our method is an extension of the subsurface light propagation volumes (SSLPV) (Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pp 7–14 ACM 2011) technique. We improve the SSLPV by incorporating a single-scattering framework that uses the same spherical harmonics (SH) storage structure as the SSLPV. The new single-scattering technique deposits radiance as SH coefficients during a ray marching procedure. The final result is rendered using a ray tracer with importance sampling along the camera ray. This framework also enables the ESLPV to render refractive objects. In addition, we also propose a distance transform optimization that can remove the unnecessary computations during the propagation cycle of LPV (Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pp 99–107 ACM 2010) based methods. A hierarchical propagation process is also proposed to render highly translucent materials. Similar to the SSLPV, our ESLPV method contains no precomputations, and has low storage requirements that are independent of the mesh size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bernabei, D., Hakke-Patil, A., Banterle, F., Di Benedetto, M., Ganovelli, F., Pattanaik, S., Scopigno, R.: A parallel architecture for interactively rendering scattering and refraction effects. Comput. Gr. Appl. IEEE 32(2), 34–43 (2012)

    Article  Google Scholar 

  2. Billeter, M., Sintorn, E., Assarsson, U.: Real-time multiple scattering using light propagation volumes. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’12, pp. 119–126. ACM, New York (2012)

  3. Børlum, J., Christensen, B.B., Kjeldsen, T.K., Mikkelsen, P.T., Noe, K.O., Rimestad, J., Mosegaard, J.: Sslpv: subsurface light propagation volumes. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pp. 7–14. ACM, New York (2011)

  4. Carr, N.A., Hall, J.D., Hart, J.C.: Gpu algorithms for radiosity and subsurface scattering. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics hardware, HWWS ’03, pp. 51–59. Eurographics Association (2003)

  5. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis. Comput. 28, 701–711 (2012)

    Article  Google Scholar 

  6. Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D graphics and games, I3D ’05, pp. 203–231. ACM, New York (2005)

  7. d’Eon, E., Luebke, D., Enderton, E.: Efficient rendering of human skin. In: Proceedings of the 18th Eurographics conference on Rendering Techniques, EGSR’07, pp. 147–157. Eurographics Association (2007)

  8. Eisemann, E., Décoret, X.: Single-pass gpu solid voxelization for real-time applications. In: Proceedings of graphics interface 2008, GI ’08, pp. 73–80. Canadian Information Processing Society (2008)

  9. Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-boltzmann lighting. In: Proceedings of the Fifteenth Eurographics conference on Rendering Techniques, EGSR’04, pp. 355–362. Eurographics Association (2004)

  10. Gkioulekas, I., Xiao, B., Zhao, S., Adelson, E.H., Zickler, T., Bala, K.: Understanding the role of phase function in translucent appearance. ACM Trans. Gr. 32(5), 147:1–147:19 (2013)

    Article  Google Scholar 

  11. Habel, R., Christensen, P.H., Jarosz, W.: Photon beam diffusion: a hybrid monte carlo method for subsurface scattering. Computer Graphics Forum (Proceedings of EGSR 2013) 324, 27–37 (2013)

  12. Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Gr. 23(2), 120–142 (2004)

    Google Scholar 

  13. Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor, M., Seidel, H.P.: Eikonal rendering: efficient light transport in refractive objects. ACM Trans. Graph. 26(3), 59:1–59:10 (2007)

  14. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Gr. 21(3), 576–581 (2002)

    Article  Google Scholar 

  15. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01, pp. 511–518. ACM (2001)

  16. Jimenez, J., Whelan, D., Sundstedt, V., Gutierrez, D.: Real-time realistic skin translucency. Comput. Gr. Appl. IEEE 30(4), 32–41 (2010)

    Article  Google Scholar 

  17. Kaplanyan, A., Dachsbacher, C.: Cascaded light propagation volumes for real-time indirect illumination. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10, pp. 99–107. ACM (2010)

  18. Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.P.: Interactive rendering of translucent objects. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, PG ’02, pp. 214. IEEE Computer Society (2002)

  19. Li, D., Sun, X., Ren, Z., Lin, S., Tong, Y., Guo, B., Zhou, K.: Transcut: interactive rendering of translucent cutouts. IEEE Trans. Vis. Comput. Gr. 19(3), 484–494 (2013)

    Article  Google Scholar 

  20. Mertens, T., Kautz, J., Bekaert, P., Van Reeth, F., Seidel, H.P.: Efficient rendering of local subsurface scattering. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, PG ’03, pp. 51–58. IEEE Computer Society (2003)

  21. Munoz, A., Echevarria, J.I., Seron, F.J., Gutierrez, D.: Convolution-based simulation of homogeneous subsurface scattering. Comput. Gr. Forum 30(8), 2279–2287 (2011)

    Article  Google Scholar 

  22. Olovsson, J.D., Doggett, M.: Octree light propagation volumes. Proc. SIGRAD 2013, 27–33 (2013)

    Google Scholar 

  23. Parker, S.G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., Stich, M.: Optix: a general purpose ray tracing engine. ACM Trans. Gr. 29(4), 66:1–66:13 (2010)

    Article  Google Scholar 

  24. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco (2004)

  25. Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on gpus. ACM Trans. Gr. 29(6), 179:1–179:10 (2010)

    Article  Google Scholar 

  26. Sheng, Y., Shi, Y., Wang, L., Narasimhan, S.G.: A practical analytic model for the radiosity of translucent scenes. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’13, pp. 63–70. ACM (2013)

  27. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Gr. 21(3), 527–536 (2002)

    Article  Google Scholar 

  28. Stam, J.: Multiple scattering as a diffusion process. In: Hanrahan, P., Purgathofer, W., (eds.) Rendering Techniques ’95, Eurographics, pp. 41–50. Springer, Vienna (1995)

  29. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Gr. 27(1), 9:1–9:18 (2008)

    Google Scholar 

  30. Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D., Chen, Q., Hua, W., Peng, Q., Bao, H.: Real-time editing and relighting of homogeneous translucent materials. Vis. Comput. 24(7–9), 565–575 (2008)

    Article  Google Scholar 

  31. Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Gr. 24(3), 1202–1207 (2005)

    Article  Google Scholar 

  32. Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.M.: Real-time homogenous translucent material editing. Comput. Gr. Forum 26(3), 545–552 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We thank all reviewers for their comments and Stanford Computer Graphics Laboratory for their 3D models. Henry Johan is supported by Fraunhofer IDM@ NTU, which is funded by the National Research Foundation (NRF) and managed through the multi-agency Interactive and Digital Media Programme Office (IDMPO) hosted by Media Development Authority of Singapore (MDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Di Koa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koa, M.D., Johan, H. ESLPV: enhanced subsurface light propagation volumes. Vis Comput 30, 821–831 (2014). https://doi.org/10.1007/s00371-014-0952-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0952-3

Keywords