Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Adaptive transmission compensation via human visual system for efficient single image dehazing

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Dark channel prior has been used widely in single image haze removal because of its simple implementation and satisfactory performance. However, it often results in halo artifacts, noise amplification, over-darking, and/or over-saturation for some images containing heavy fog or large sky patches where dark channel prior is not established. To resolve this issue, this paper proposes an efficient single dehazing algorithm via adaptive transmission compensation based on human visual system (HVS). The key contributions of this paper are made as follows: firstly, two boundary constraints on transmission are deduced to preserve the intensity of the defogged image and suppress halo artifacts or noise via the minimum intensity constraint and the just-noticeable distortion model, respectively. Secondly, an improved HVS segmentation algorithm is employed to detect the saturation areas in the input image. Finally, an adaptive transmission compensation strategy is presented to remove the haze and simultaneously suppress the halo artifacts or noise in the saturation areas. Experimental results indicate that this proposed method can efficiently improve the visibility of the foggy images in the challenging condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Polarization-based vision through haze. Appl. Opt. 42(3), 511–525 (2003)

    Article  Google Scholar 

  2. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48(3), 233–254 (2002)

    Article  MATH  Google Scholar 

  3. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. 25(6), 713–724 (2003)

    Article  Google Scholar 

  4. Kopf, J., Neubert, B., Chen, B., Cohen, M.F., Deussen, O., Konstanz, et al.: Deep photo: model-based photograph enhancement and viewing. ACM Trans. Graph. 27(5), 116:1–116:10 (2008)

    Article  Google Scholar 

  5. Fattal, R.: Single Image Dehazing. ACM Trans. Graph. 27(3), 721–729 (2008)

    Article  Google Scholar 

  6. Tan, R.T.: Visibility in bad weather from a single image. In: IEEE International Conference on Computer Vision (CVPR). New York, USA (2008)

  7. Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. 28(6–8), 713–721 (2012)

    Article  Google Scholar 

  8. He, K., Sun, J., Tang, X: Single image haze removal using dark channel prior. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1956–1963 (2009)

  9. Yan, W., Bo, W.: Improved single image dehazing using dark channel prior. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), pp. 789–792 (2010)

  10. Inhye, Y., Seonyung, K., Donggyun, K., Hayes, M.H., Joonki, P.: Adaptive defogging with color correction in the HSV color space for consumer surveillance system. IEEE Trans. Consum. Electron. 58(1), 111–116 (2012)

    Article  Google Scholar 

  11. Xie, B., Guo, F., Cai, Z.: Universal strategy for surveillance video defogging. Opt. Eng. 51(10), 1017031–1017037 (2012)

    Article  Google Scholar 

  12. Sun, W., Guo, B.L., Li, D.J., Jia, W.: Fast single-image dehazing method for visible-light systems. Opt. Eng. 52(9), 0931031–9 (2013)

    Article  Google Scholar 

  13. Zhang, J., Li, L., Zhang, Y., Yang, G., Cao, X., Sun, J.: Video dehazing with spatial and temporal coherence. Vis. Comput. 27, 749–757 (2011)

    Article  Google Scholar 

  14. Tripathi, A.K., Mukhopadhyay, S.: Single image fog removal using anisotropic diffusion. IET Image Proc. 6(7), 966–975 (2012)

    Article  MathSciNet  Google Scholar 

  15. McCartney, E.J.: Optics of Atmosphere: Scattering by Molecules and Particles. Wiley, New York (1976)

    Google Scholar 

  16. Koschmieder, H.: Theorie der horizontaler Sichtweite Beitraege. Phys. Freib. Atmos. 12, 33–55 (1925)

    Google Scholar 

  17. Ancuti, C.O., Ancuti, C.: Single Image dehazing by multi-scale fusion. IEEE Trans. Image Proc. 22(8), 3271–3282 (2013)

    Article  Google Scholar 

  18. Li, W.J., Gu, B., Huang, J.T., Wang, S.Y., Wang, M.H.: Single image visibility enhancement in gradient domain. IET Image Proc. 6(5), 589–595 (2012)

    Article  MathSciNet  Google Scholar 

  19. Yan, Q., Xu, L., Jia, J.: Dense scattering layer removal. In: SIGGRAPH Asia 2013 Technical Briefs. ACM New York, NY, USA

  20. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: IEEE International Conference on Computer Vision (ICCV), pp. 617–624. Sydney, NSW (2013)

  21. Chou, C., Li, Y.: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans. Circ. Syst. Vid. 5(6), 467–476 (1995)

    Article  Google Scholar 

  22. Lee, C., Lin, P., Chen, L., Wang, W.: Image enhancement approach using the just-noticeable-difference model of the human visual system. J. Electron. Imag. 21(6), 33007 (2012)

    Article  Google Scholar 

  23. Panetta, K.A., Wharton, E.J., Agaian, S.S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. Syst., Man Cybern. B 38(1), 174–188 (2008)

    Article  Google Scholar 

  24. He, K., Sun, J., Tang, X.: Guided image filtering. In: The 11th European Conference on Computer Vision (ECCV), pp. 1–14. Heraklion, Crete, Greece (2010)

  25. Tarel, J., Ere, N.H.: Fast visibility restoration from a single color or gray level image. In: IEEE International Conference on Computer Vision, pp. 2201–2208. New York, USA (2009)

  26. Hautière, N., Tarel, J., Aubert, D., Dumont, É.: Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal. Stereol. 27(2), 87–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA112312), National Natural Science Foundation of China (Grant No.61471166 and 61175075), the Science and Technique Project of Ministry of Transport of the People’s Republic of China (Grant No. 201231849A70) and Hunan Provincial Natural Science Foundation of China (14JJ2052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Z., Li, S., Wang, Y. et al. Adaptive transmission compensation via human visual system for efficient single image dehazing. Vis Comput 32, 653–662 (2016). https://doi.org/10.1007/s00371-015-1081-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1081-3

Keywords