Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Virtual cutting of deformable objects based on efficient topological operations

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Virtual cutting of deformable objects is at the core of many applications in interactive simulation and especially in computational medicine. The ability to simulate surgical cuts, dissection, soft tissue tearing or micro-fractures is essential for augmenting the capabilities of existing or future simulation systems. To support such features, we combine a new remeshing algorithm with a fast finite element approach. The proposed method is generic enough to support a large variety of applications. We show the benefits of our approach evaluating the impact of cuts on the number of nodes and the numerical quality of the mesh. These points are crucial to ensure accurate and stable real-time simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bielser, D., Glardon, P., Teschner, M., Gross, M.H.: A state machine for real-time cutting of tetrahedral meshes. Graphical Models 66(6), 398–417 (2004)

    Article  MATH  Google Scholar 

  3. Bielser, D., Maiwald, V.A., Gross, M.H.: Interactive cuts through 3-dimensional soft tissue. Computer Graphics Forum 18(3), 31–38 (1999)

    Article  Google Scholar 

  4. Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and feature-preserving subdivision for high-quality tetrahedral meshes. Computer Graphics Forum 29(1), 117–127 (2010)

    Article  Google Scholar 

  5. Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg, K., Shewchuk, J.R., O’Brien, J.F.: Interactive simulation of surgical needle insertion and steering. ACM Trans. Graph. 28(3), 88:1–88:10 (2009)

    Article  Google Scholar 

  6. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)

    Article  MATH  Google Scholar 

  7. Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18(2), 394–410 (2014)

    Article  Google Scholar 

  8. Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. Visual. Comp. Graph. IEEE Trans. 17(11), 1663–1675 (2011)

    Article  Google Scholar 

  9. Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., et al.: Sofa: A multi-model framework for interactive physical simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283–321. Springer, Berlin Heidelberg (2012)

  10. Felippa, C., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. theory. Comp. Methods Appl. Mech. Eng. 194(21), 2285–2335 (2005)

    Article  MATH  Google Scholar 

  11. Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Comp. Graph. Forum 19(3), 271–281 (2000)

    Article  Google Scholar 

  12. Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numerische Mathematik 75(4), 447–472 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kohn, L.T., Corrigan, J.M., Donaldson, M.S., et al.: To err is human: building a safer health system, vol. 627. National Academies Press, USA (2000)

    Google Scholar 

  14. Koschier, D., Lipponer, S., Bender, J.: Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association (2014)

  15. Kraemer, P., Untereiner, L., Jund, T., Thery, S., Cazier, D.: CGoGN: N-dimensional meshes with combinatorial maps. In: 22nd International Meshing Roundtable, pp. 485–503. Switzerland (2013)

  16. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05. ACM, New York, NY, USA (2005)

  17. Mor, A., Kanade, T.: Modifying soft tissue models: Progressive cutting with minimal new element creation. In: Delp, S., DiGoia, A., Jaramaz, B. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2000, Lecture Notes in Computer Science, vol. 1935, pp. 598–607. Springer, Berlin Heidelberg (2000)

  18. Nienhuys, H.W., Frank van der Stappen, A.: A surgery simulation supporting cuts and finite element deformation. In: Niessen, W., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2001, Lecture Notes in Computer Science, vol. 2208, pp. 145–152. Springer, Berlin Heidelberg (2001)

  19. O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 137–146. ACM Press/Addison-Wesley Publishing Co., New York (1999)

  20. Payan, Y.: Soft tissue biomechanical modeling for computer assisted surgery, vol. 11. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  21. Rivara, M.C.: Local modification of meshes for adaptive and/or multigrid finite-element methods. J. Comput. Appl. Math. 36(1), 79–89 (1991). Special Issue on Adaptive Methods

    Article  MATH  MathSciNet  Google Scholar 

  22. Sauter, S., Warnke, R.: Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing 77(1), 29–55 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schaefer, S., Hakenberg, J.P., Warren, J.: Smooth subdivision of tetrahedral meshes. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on geometry processing, SGP ’04, pp. 147–154. ACM, New York (2004)

  24. Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pp. 73–80. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007). http://dl.acm.org/citation.cfm?id=1272690.1272701

  25. Stanculescu, L., Chaine, R., Cani, M.P., Singh, K.: Sculpting multi-dimensional nested structures. Comp. Graph. 37(6), 753–763 (2013)

    Article  Google Scholar 

  26. Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: Virtual Reality Conference, 2006, 35–42 (2006)

  27. Wu, J., Dick, C., Westermann, R.: Interactive high-resolution boundary surfaces for deformable bodies with changing topology. In: Proceedings of 8th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS) 2011, pp. 29–38 (2011)

  28. Wu, J., Westermann, R., Dick, C.: Physically-based simulation of cuts in deformable bodies: A survey. In: Eurographics 2014 State-of-the-Art Report, pp. 1–19. Eurographics Association, Strasbourg, France (2014)

  29. Wu, J., Westermann, R., Dick, C.: Real-time haptic cutting of high resolution soft tissues. Studies Health Technol. Inform. (Proc. Medicine Meets Virtual Reality 2014) 196, 469–475 (2014). Published by IOS Press

    Google Scholar 

  30. Zhang, Y., Hughes, T., Bajaj, C.: An automatic 3d mesh generation method for domains with multiple materials. Comp. Methods Appl. Mech. Eng. 199(5), 405–415 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Paulus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulus, C.J., Untereiner, L., Courtecuisse, H. et al. Virtual cutting of deformable objects based on efficient topological operations. Vis Comput 31, 831–841 (2015). https://doi.org/10.1007/s00371-015-1123-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1123-x

Keywords