Abstract
This article presents a novel parametric model to include expressive chromatic aberrations in defocus blur rendering and its effective implementation using the accumulation buffering. Our model modifies the thin-lens model to adopt the axial and lateral chromatic aberrations, which allows us to easily extend them with nonlinear and artistic appearances beyond physical limits. For the dispersion to be continuous, we employ a novel unified 3D sampling scheme, involving both the lens and spectrum. We further propose a spectral equalizer to emphasize particular dispersion ranges. As a consequence, our approach enables more intuitive and explicit control of chromatic aberrations, unlike the previous physically-based rendering methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akenine-Möller, T., Munkberg, J., Hasselgren, J.: Stochastic rasterization using time-continuous triangles. In: Proc. Graphics Hardware, pp. 7–16 (2007)
Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. ACM Comput. Graph. 18(3), 137–145 (1984)
Games, E.: Unreal engine. http://www.unrealengine.com (2016). Accessed 21 Feb 2016
Gotanda, Y., Kawase, M., Kakimoto, M.: Real-time rendering of physically based optical effects in theory and practice. In: ACM SIGGRAPH Courses, p. 23. ACM, New York (2015)
Guy, S., Soler, C.: Graphics gems revisited: fast and physically-based rendering of gemstones. ACM Trans. Graph. 23(3), 231–238 (2004)
Haeberli, P., Akeley, K.: The accumulation buffer: hardware support for high-quality rendering. ACM Comput. Graph. 24(4), 309–318 (1990)
Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun. ACM 7(12), 701–702 (1964)
Hanika, J., Dachsbacher, C.: Efficient monte carlo rendering with realistic lenses. Comput. Graph. Forum 33(2), 323–332 (2014)
Hullin, M., Eisemann, E., Seidel, H.P., Lee, S.: Physically-based real-time lens flare rendering. ACM Trans. Graph. 30(4), 108:1–108:9 (2011)
Hullin, M.B., Hanika, J., Heidrich, W.: Polynomial optics: a construction kit for efficient ray-tracing of lens systems. Comput. Graph. Forum 31(4), 1375–1383 (2012)
Kolb, C., Mitchell, D., Hanrahan, P.: A realistic camera model for computer graphics. In: Proc. ACM SIGGRAPH, pp. 317–324. ACM, New York (1995)
Kraus, M., Strengert, M.: Depth-of-field rendering by pyramidal image processing. Comput. Graph. Forum 26(3), 645–654 (2007)
Lee, S., Eisemann, E.: Practical real-time lens-flare rendering. Comput. Graph. Forum 32(4), 1–6 (2013)
Lee, S., Eisemann, E., Seidel, H.P.: Depth-of-field rendering with multiview synthesis. ACM Trans. Graph. 28(5), 134:1–134:6 (2009)
Lee, S., Eisemann, E., Seidel, H.P.: Real-time lens blur effects and focus control. ACM Trans. Graph. 29(4), 65:1–65:7 (2010)
Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field rendering using splatting on per-pixel layers. Comput. Graph. Forum 27(7), 1955–1962 (2008)
Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field rendering using anisotropically filtered mipmap interpolation. IEEE Trans. Vis. Comput. Graph. 15(3), 453–464 (2009)
McGraw, T.: Fast Bokeh effects using low-rank linear filters. Vis. Comput. 31(5), 601–611 (2015)
Polyanskiy, M.: Refractive index database. http://refractiveindex.info (2016). Accessed 21 Feb 2016
Potmesil, M., Chakravarty, I.: A lens and aperture camera model for synthetic image generation. ACM Comput. Graph. 15(3), 297–305 (1981)
Rokita, P.: Generating depth of-field effects in virtual reality applications. IEEE Comput. Graph. Appl. 16(2), 18–21 (1996)
Schedl, D.C., Wimmer, M.: A layered depth-of-field method for solving partial occlusion. J. WSCG 20(3), 239–246 (2012)
Sellmeier, W.: Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen. Annalen der Physik und Chemie 219(6), 272–282 (1871)
Smith, T., Guild, J.: The CIE colorimetric standards and their use. Trans. Opt. Soc. 33(3), 73 (1931)
Smith, W.J.: Modern Optical Engineering. McGraw-Hill, New York (2000)
Steinert, B., Dammertz, H., Hanika, J., Lensch, H.P.: General spectral camera lens simulation. Comput. Graph. Forum 30(6), 1643–1654 (2011)
Thomas, S.W.: Dispersive refraction in ray tracing. Vis. Comput. 2(1), 3–8 (1986)
Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with hammersley and halton points. J. Graph. Tools 2(2), 9–24 (1997)
Wu, J., Zheng, C., Hu, X., Wang, Y., Zhang, L.: Realistic rendering of bokeh effect based on optical aberrations. Vis. Comput. 26(6–8), 555–563 (2010)
Wu, J., Zheng, C., Hu, X., Xu, F.: Rendering realistic spectral Bokeh due to lens stops and aberrations. Vis. Comput. 29(1), 41–52 (2013)
Zernike, F., Midwinter, J.E.: Applied Nonlinear Optics. Courier Corporation, North Chelmsford (2006)
Acknowledgments
The Penguins, Fading-man, Tree (Downy Oak), (Golden) Bird, and Pegasus models are provided through the courtesy of http://www.domawe.net, Riley Lewand, the Xfrog Inc., http://www.cadnav.com, and the AIM@Shape Repository, respectively. Correspondence concerning this article can be addressed to Sungkil Lee.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Mid-career and Global Frontier (on Human-centered Interaction for Coexistence) R&D programs through the NRF grants funded by the Korea Government (MSIP) (Nos. 2015R1A2A2A01003783, 2012M3A6A3055695).
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 21899 KB)
Rights and permissions
About this article
Cite this article
Jeong, Y., Lee, S., Kwon, S. et al. Expressive chromatic accumulation buffering for defocus blur. Vis Comput 32, 1025–1034 (2016). https://doi.org/10.1007/s00371-016-1244-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-016-1244-x