Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detail-preserved real-time hand motion regression from depth

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper aims to address the very challenging problem of efficient and accurate hand tracking from depth sequences, meanwhile to deform a high-resolution 3D hand model with geometric details. We propose an integrated regression framework to infer articulated hand pose, and regress high-frequency details from sparse high-resolution 3D hand model examples. Specifically, our proposed method mainly consists of four components: skeleton embedding, hand joint regression, skeleton alignment, and high-resolution details integration. Skeleton embedding is optimized via a wrinkle-based skeleton refinement method for faithful hand models with fine geometric details. Hand joint regression is based on a deep convolutional network, from which 3D hand joint locations are predicted from a single depth map, then a skeleton alignment stage is performed to recover fully articulated hand poses. Deformable fine-scale details are estimated from a nonlinear mapping between the hand joints and per-vertex displacements. Experiments on two challenging datasets show that our proposed approach can achieve accurate, robust, and real-time hand tracking, while preserve most high-frequency details when deforming a virtual hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. In: ACM Trans. Gr. (TOG) 26, 72 (2007). ACM

    Google Scholar 

  2. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: a review. Comput. Vis. Image Underst. 108(1), 52–73 (2007)

    Article  Google Scholar 

  3. Fan, Q., Shen, X., Hu, Y., Yu, C.: Simple very deep convolutional network for robust hand pose regression from a single depth image. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.10.019

  4. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 209–216. ACM Press/Addison-Wesley Publishing Co. (1997)

  5. Ge, L., Liang, H., Yuan, J., Thalmann, D.: Robust 3d hand pose estimation in single depth images: from single-view cnn to multi-view cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3593–3601 (2016)

  6. Guo, K., Xu, F., Wang, Y., Liu, Y., Dai, Q.: Robust non-rigid motion tracking and surface reconstruction using l0 regularization. In: IEEE International Conference on Computer Vision, pp. 3083–3091 (2016)

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

  8. Heap, T., Hogg, D.: Towards 3d hand tracking using a deformable model. In: Automatic Face and Gesture Recognition, 1996., IEEE Proceedings of the Second International Conference on, pp. 140–145. (1996)

  9. Huang, H., Yin, K., Zhao, L., Qi, Y., Yu, Y., Tong, X.: Detail-preserving controllable deformation from sparse examples. IEEE Trans. Visual Comput. Gr. 18(8), 1215–1227 (2012)

    Article  Google Scholar 

  10. Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. In: ACM SIGGRAPH Asia, p. 175 (2009)

  11. Oberweger, M., Wohlhart, P., Lepetit, V.: Hands deep in deep learning for hand pose estimation. arXiv preprint arXiv:1502.06807 (2015)

  12. Oberweger, M., Wohlhart, P., Lepetit, V.: Training a feedback loop for hand pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3316–3324 (2015)

  13. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3d tracking of hand articulations using kinect. BmVC 1, 3 (2011)

    Google Scholar 

  14. Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly interacting hands. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1862–1869 (2012)

  15. Schröder, M., Maycock, J., Ritter, H., Botsch, M.: Real-time hand tracking using synergistic inverse kinematics. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5447–5454 (2014)

  16. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using rgb and depth data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2456–2463 (2013)

  17. Stenger, B., Mendonça, P.R., Cipolla, R.: Model-based 3d tracking of an articulated hand. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 2, pp. II–II (2001)

  18. Sun, X., Wei, Y., Liang, S., Tang, X., Sun, J.: Cascaded hand pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 824–832 (2015)

  19. Supancic III, J.S., Rogez, G., Yang, Y., Shotton, J., Ramanan, D.: Depth-based hand pose estimation: methods, data, and challenges. arXiv preprint (2015) arXiv:1504.06378

  20. Tagliasacchi, A., Schröder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.: Robust articulated-icp for real-time hand tracking. In: Computer Graphics Forum, vol. 34, pp. 101–114. Wiley Online Library (2015)

  21. Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Sharp, T., Soto, E., Sweeney, D., Valentin, J., Luff, B., et al.: Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans. Gr. (TOG) 35(4), 143 (2016)

    Google Scholar 

  22. Taylor, J., Shotton, J., Sharp, T., Fitzgibbon, A.: The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 103–110 (2012)

  23. Tkach, A., Pauly, M., Tagliasacchi, A.: Sphere-meshes for real-time hand modeling and tracking. ACM Trans. Gr. (TOG) 35(6), 222 (2016)

    Google Scholar 

  24. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Gr. (TOG) 33(5), 169 (2014)

    Google Scholar 

  25. Wang, R.Y., Popović, J.: Real-time hand-tracking with a color glove. In: ACM transactions on graphics (TOG), vol. 28, p. 63. ACM (2009)

  26. Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3456–3462 (2013)

  27. Zhou, X., Wan, Q., Zhang, W., Xue, X., Wei, Y.: Model-based deep hand pose estimation. In: IJCAI (2016)

  28. Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., et al.: Real-time non-rigid reconstruction using an rgb-d camera. ACM Trans. Gr. (TOG) 33(4), 156 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable suggestions. This paper is supported by National Key Technologies R & D Program of China (No.2017YFB1002702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hu.

Ethics declarations

Conflict of interest

All Authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Shen, X. & Hu, Y. Detail-preserved real-time hand motion regression from depth. Vis Comput 34, 1145–1154 (2018). https://doi.org/10.1007/s00371-018-1546-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1546-2

Keywords