Abstract
In this work, we present a novel 3D indirect shape analysis method which successfully retrieves 3D shapes based on hand–object interaction. To this end, the human hand information is first transferred to the virtual environment by the Leap Motion controller. Position-, angle- and intersection-based novel features of the hand and fingers are used for this part. In the guidance of these features that define the way humans grab objects, a support vector machine (SVM) classifier is trained. Experiments validate that SVM results are useful for retrieval of 3D shapes. We also compare the retrieval performance of our method with an interaction-based indirect method based on the Data Glove controller as well as a direct method based on 3D shape distribution histograms. These comparisons reveal different advantages of our method, which are (i) being lower-cost and more accurate compared to the Data Glove, and (ii) being more discriminative compared to a direct approach. We finally note that our algorithm is rigid-motion invariant and able to explore databases of arbitrarily represented 3D shapes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Gr. 22(1), 83–105 (2003)
Passalis, G., Theoharis, T., Kakadiaris, I.: Ptk: a novel depth buffer-based shape descriptor for three-dimensional object retrieval. Vis. Comput. 23, 5–14 (2007)
Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Gr. 21(4), 807–832 (2002)
Paquet, E., Rioux, M., Murching, A., Naveen, T.: Description of shape information for 2-D and 3-D objects. Signal Process. Image Commun. 16(1–2), 103–122 (2000)
Zheng, Y., Neo, Y., Chua, T., Tian, Q.: Toward a higher-level visual representation for object-based image retrieval. Vis. Comput. 25, 13–23 (2009)
Novotni, M., Klein, R.: Shape retrieval using 3D Zernike descriptors. Comput. Aided Des. 36(11), 1047–1062 (2004)
Canterakis, N.: 3D Zernike moments and Zernike affine invariants for 3D image analysis and recognition. In: 11th Scandinavian Conference on Image Analysis, pp. 85–93 (1999)
Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)
Shilane, P., Funkhouser, T.: Selecting distinctive 3D shape descriptors for similarity retrieval. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, SMI 2006, p. 18 (2006)
Wang, P., Liu, Y., Guo, Y., Sun, C., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Gr. 36(4), 1–11 (2017)
Gao, Y., Yang, Y., Dai, Q., Zhang, N.: Representative views re-ranking for 3d model retrieval with multi-bipartite graph reinforcement model. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 947–950 (2010)
Gao, Y., Wang, M., Shen, J., Dai, Q., Zhang, N.: Intelligent query: open another door to 3d object retrieval. In: Proceedings of the 18th ACM International Conference on Multimedia, ACM, pp. 1711–1714 (2010)
Bai, S., Bai, X., Zhou, Z., Zhang, Z., Tian, Q., Latecki, L.: GIFT: towards scalable 3D shape retrieval. IEEE Trans. Multimed. 19(6), 1257–1271 (2017)
Gao, Y., Wang, M., Tao, D., Ji, R., Dai, Q.: 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans. Image Process. 21(9), 4290–4303 (2012)
Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.: Camera constraint-free view-based 3-D object retrieval. IEEE Trans. Image Process. 21(4), 2269–2281 (2012)
Leifman, G., Meir, R., Tal, A.: Semantic-oriented 3d shape retrieval using relevance feedback. Vis. Comput. 21, 865–875 (2005)
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)
Sipiran, I., Meruane, R., Bustos, B., Schreck, T., Li, B., Lu, Y., Johan, H.: A benchmark of simulated range images for partial shape retrieval. Vis. Comput. 30(11), 1293–1308 (2014)
Hilaga, M., Shinagawa, Y.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 203–212 (2001)
Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Proceedings of SMI 2003: Shape Modeling International, pp. 130–139 (2003)
Jain, V., Zhang, H.: A spectral approach to shape-based retrieval of articulated 3D models. CAD Comput. Aided Des. 39(5), 398–407 (2007)
Reuter, M., Wolter, F., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: SPM ’05 Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, vol. 1, no. 212, pp. 101–106 (2005)
Sahillioğlu, Y., Sezgin, M.: Sketch-based articulated 3d shape retrieval. IEEE Comput. Gr. Appl. 37(6), 88–101 (2017)
Sahillioğlu, Y., Yemez, Y.: Minimum-distortion isometric shape correspondence using em algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2203–2215 (2012)
Memoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Found. Comput. Math. 5(3), 313–347 (2005)
Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Gr. 30(1), 1 (2011)
Sahillioğlu, Y.: A shape deformation algorithm for constrained multidimensional scaling. Comput. Gr. 53, 156–165 (2015)
Sahillioğlu, Y., Kavan, L.: Detail-preserving mesh unfolding for non-rigid shape retrieval. ACM Trans. Gr. 35(3), 27 (2016)
Pickup, D., Liu, J., Sun, X., Rosin, P., Martin, R., Cheng, Z., Lian, Z., Nie, S., Jin, L., Shami, G., Sahillioğlu, Y., Kavan, L.: An evaluation of canonical forms for non-rigid 3d shape retrieval. Gr. Models 97, 17–29 (2018)
Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25, 667–675 (2009)
Li, C., Hamza, A.: A multiresolution descriptor for deformable 3d shape retrieval. Vis. Comput. 29, 513–524 (2013)
Toldo, R., Castellani, U., Fusiello, A.: The bag of words approach for retrieval and categorization of 3d objects. Vis. Comput. 26, 1257–1268 (2010)
Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. Vis. Comput. 28, 931–942 (2012)
Fan, Q., Shen, X., Hu, Y.: Detail-preserved real-time hand motion regression from depth. Vis. Comput. 34, 1145–1154 (2018)
Abbasi, A., Kalkan, S., Sahillioğlu, Y.: Deep 3d semantic scene extrapolation. Vis. Comput. (2018). https://doi.org/10.1007/s00371-018-1586-7
Xie, J., Fang, Y., Zhu, F., Wong, E.: Deepshape: deep learned shape descriptor for 3D shape matching and retrieval. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07, pp. 1275–1283 (2015)
Liu, Z., Xie, C., Bu, S., Wang, X., Han, J., Lin, H., Zhang, H.: Indirect shape analysis for 3D shape retrieval. Comput. Gr. 46, 110–116 (2015)
Kim, V.G., Chaudhuri, S., Guibas, L., Funkhouser, T.: Shape2pose: human-centric shape analysis. ACM Trans. Gr. 33(4), 120 (2014)
Gibson, J.: The theory of affordances. In: Perceiving Acting, and Knowing, pp. 127–142 (1977)
Hu, R., Zhu, C., van Kaick, O., Liu, L., Shamir, A., Zhang, H.: Interaction context (icon): towards a geometric functionality descriptor. ACM Trans. Gr. 34(4), 83:1–83:12 (2015)
Zhu, Y., Fathi, A., Fei-Fei, L.: Reasoning about object affordances in a knowledge base representation. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8690 LNCS, pp. 408–424 (2014)
Bar-Aviv, E., Rivlin, E.: Functional 3D object classification using simulation of embodied agent. In: Proceedings of the British Machine Vision Conference, pp. 32.1–32.10 (2006)
5DT: 5DT Data Glove Ultra Series User Manual
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D models with shape distributions. In: International Conference on Shape Modeling and Applications, pp. 154–166 (2001)
Acknowledgements
This work has been supported by TUBITAK under the project EEEAG-115E471.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Irmak, E.C., Sahillioğlu, Y. 3D indirect shape retrieval based on hand interaction. Vis Comput 36, 5–17 (2020). https://doi.org/10.1007/s00371-018-1597-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1597-4