Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Three-dimensional salient point detection based on the Laplace–Beltrami eigenfunctions

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) salient point detection is a fundamental problem in computer graphics and computer vision. We propose a new method using the Laplace–Beltrami eigenfunctions for detecting the salient points of 3D models. We compute the extrema of the low-frequency Laplace–Beltrami eigenfunctions and remove the redundancy of the extrema. Merging the extrema of the eigenfunctions, we keep the extrema appearing simultaneously on no less than a certain number of eigenfunctions as the candidate salient points. Clustering these extrema, we consider the representatives of the clusters as the final salient points. Our experimental results demonstrate that the proposed method is effective for 3D salient point detection. Besides that, some experiments are also conducted to verify that the proposed method is insensitive to small boundary noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10(4), 385–396 (2004)

    Article  Google Scholar 

  2. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. Comput. Graph. Forum 27(2), 643–652 (2008)

    Article  Google Scholar 

  3. Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, vol. 115. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  4. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers, New York (1953)

    MATH  Google Scholar 

  5. Darom, T., Keller, Y.: Scale-Invariant Features for 3-D Mesh Models. IEEE Press, Piscataway (2012)

    Book  Google Scholar 

  6. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Trans. Graph. 25(3), 1057–1066 (2006)

    Article  Google Scholar 

  7. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated ground truth. Vis. Comput. 28(9), 901–917 (2012)

    Article  Google Scholar 

  8. Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Symposium on Geometry Processing, pp. 1405–1413 (2009)

  9. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proceedings of Eurographics Symposium on Geometry Processing, p. 197 (2005)

  10. Godil, A., Wagan, A.I.: Salient local 3D features for 3D shape retrieval. Proc. SPIE Int. Soc. Opt. Eng. 7864(13), 7864S–7864S-8 (2011)

    Google Scholar 

  11. Harris, C.M.S.: A combined corner and edge detector. Proc. Alvey Vis. Conf. 3, 147–151 (1988)

    Google Scholar 

  12. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)

    Article  Google Scholar 

  13. Hu, J., Hua, J.: Pose analysis using spectral geometry. Vis. Comput. 29(9), 949–958 (2013)

    Article  Google Scholar 

  14. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 649–658 (2005)

    Article  Google Scholar 

  15. Knopp J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D surf for robust three dimensional classification. In: Computer Vision—ECCV 2010—European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, pp. 589–602 (2010)

  16. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  17. Lian, Z., Godil, A., Daoudi, M., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Nguyen, H.V., Ohbuchi, R., Ohkita, Y.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)

    Article  Google Scholar 

  18. Lin, X., Zhu, C., Zhang, Q., Liu, Y.: 3D interest point detection based on geometric measures and sparse refinement. arXiv preprint arXiv:1604.08806 (2016)

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  20. Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

  21. O’Rourke, J.: Computational geometry column 35. SIGACT News 30(2), 31–32 (1999)

    Article  Google Scholar 

  22. Peyré, G.: Toolbox fast marching. MATLAB Central File Exchange Select (2009)

  23. Ran, G., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)

    Article  Google Scholar 

  24. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2010)

    Article  Google Scholar 

  25. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as “Shape-DNA” of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  26. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Comput. Graph. 33(3), 381–390 (2009)

    Article  Google Scholar 

  27. Ruggeri, M.R., Giuseppe, Spagnuolo M., Saupe, D.: Spectral-driven isometry-invariant matching of 3d shapes. Int. J. Comput. Vis. 89(2–3), 248–265 (2010)

    Article  Google Scholar 

  28. Shah, S.A.A., Bennamoun, M., Boussaid, F.: Keypoints-based surface representation for 3D modeling and 3D object recognition. Pattern Recognit. 64, 29–38 (2017)

    Article  Google Scholar 

  29. Sipiran, I., Bustos, B.: A robust 3D interest points detector based on Harris operator. In: Eurographics Workshop on 3D Object Retrieval, Norrköping, Sweden, May 2, 2010, Proceedings, pp. 7–14 (2010)

  30. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  31. Taubin, G.: Geometric signal processing on polygonal meshes. In: Eurographics 2000 State of the Art Report (STAR), pp. 81–96 (2000)

  32. Taylor, M.E.: Partial Differential Equations I: Basic Theory. Applied functional analysis: applications to mathematical physics, U.S. Government Printing Office (1996)

  33. Teran, L., Mordohai, P.: 3D interest point detection via discriminative learning. In: European Conference on Computer Vision, pp. 159–173 (2014)

    Chapter  Google Scholar 

  34. Yu, T.H., Woodford, O.J., Cipolla, R.: A performance evaluation of volumetric 3D interest point detectors. Int. J. Comput. Vis. 102(1–3), 180–197 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martin Reuter for making available his “ShapeDNA-tria” software and Gabriel Peyré for his toolboxes—“Toolbox Fast Marching” and “Toolbox Graph”.

Funding

This research was supported by Natural Science Foundation of Shandong province (No. ZR2019BF026, ZR2019MF013, ZR2017BF031), Project of Jinan Scientific Research Leader’s Laboratory (No. 2018GXRC023) and Doctoral Program of University of Jinan (No. 160100313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, D., Guo, H., Zhao, X. et al. Three-dimensional salient point detection based on the Laplace–Beltrami eigenfunctions. Vis Comput 36, 767–784 (2020). https://doi.org/10.1007/s00371-019-01658-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01658-x

Keywords