Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Low-rank decomposition on transformed feature maps domain for image denoising

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Low-rank based models are proved outstanding for denoising on the data with strong repetitive or redundant property. However, for natural images with complex structures or rich details, the performance drops down because of the weak low-rankness of the data. A feasible solution is to transform the data into a suitable domain to further explore the underlying low-rank information. In this paper, we present a novel approach to create such a domain via a fully replicated linear autoencoder network. By applying various low-rank models to the feature maps generated by the encoder rather than the original data, and then performing inverse transformation by the decoder, their denoising performances all get enhanced. In addition, feature maps also show good sparsity, hence we introduce a new measure combining sparse and low-rank regularity, and further propose corresponding single image denoising model. Extensive experiments show the superiority of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tim, McGraw: Fast Bokeh effects using low-rank linear filters. Vis. Computer 31(5), 601–611 (2015)

    Article  Google Scholar 

  2. Zhichao, Xue, Jing, Dong, Yuxin, Zhao, Chang, Liu, Ryad, Chellali: Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer. Vis. Computer 35(11), 1549–1566 (2019)

    Article  Google Scholar 

  3. Jhony-Heriberto, Giraldo-Zuluaga, Augusto, Salazar, Alexander, Gomez, Angélica, Diaz-Pulido: Camera-trap images segmentation using multi-layer robust principal component analysis. Vis. Computer 35(3), 335–347 (2019)

    Article  Google Scholar 

  4. Candès, Emmanuel J., Li, Xiaodong, Ma, Yi, Wright, John: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  5. Luo, Q., Han, Z., Wang, Y. etal.: Tensor RPCA by bayesian cp factorization with complex noise. In: Proceedings of IEEE International Conference on Computer Vision, pp. 5029–5038 (2017)

  6. Candès, Emmanuel J., Recht, Benjamin: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cai, Jian-Feng, Candès, Emmanuel J., Shen, Zuowei: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  8. Jain, P., Netrapalli, P., and Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 665–674 (2013)

  9. Liu, G., Lin, Z., and Yu, Y.: (2010) Robust subspace segmentation by low-rank representation. In: Proceedings of International Conference on Machine Learning, pp. 663–670

  10. Liu, Guangcan, Lin, Zhouchen, Yan, Shuicheng, Sun, Ju, Yong, Yu., Ma, Yi: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  11. Lin, Z., Liu, R., and Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Proceedings of Advances in Neural Information Processing Systems, pp. 612–620 (2011)

  12. Xu, J., Zhang, L., Zuo, W., Zhang, D., and Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: Proceedings of the IEEE international conference on computer vision, pp. 244–252 (2015)

  13. Lei, Zhu, Chi-Wing, Fu, Yueming, Jin, Mingqiang, Wei, Jing, Qin, Pheng-Ann, Heng: Non-local sparse and low-rank regularization for structure-preserving image smoothing. Computer Graphics Forum 35(7), 217–226 (2016)

    Article  Google Scholar 

  14. Zhu, L., Fu, C. W., Brown, M. S., and Heng, P. A.: A non-local low-rank framework for ultrasound speckle reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5650–5658 (2017)

  15. Xianzhi, Li, Lei, Zhu, Chi-Wing, Fu, Pheng-Ann, Heng: Non-local low-rank normal filtering for mesh denoising. Computer Graphics Forum 37(7), 155–166 (2018)

    Article  Google Scholar 

  16. Mingqiang, Wei, Jin, Huang, Xingyu, Xie, Ligang, Liu, Jun, Wang, Jing, Qin: Mesh denoising guided by patch normal co-filtering via kernel low-rank recovery. IEEE Trans. Visual Comput. Graphics 25(10), 2910–2926 (2018)

    Google Scholar 

  17. Zhang, Kai, Zuo, Wangmeng, Chen, Yunjin, Meng, Deyu, Zhang, Lei: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hinton, Geoffrey E., Salakhutdinov, Ruslan R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  19. Rafael, Ballester-Ripoll, Renato, Pajarola: Lossy volume compression using Tucker truncation and thresholding. Vis. Computer 32(11), 1433–1446 (2016)

    Article  Google Scholar 

  20. Grasedyck, Lars, Kressner, Daniel, Tobler, Christine: A literature survey of low-rank tensor approximation techniques. GAMM-Mitteilungen 36(1), 53–78 (2013)

    Article  MathSciNet  Google Scholar 

  21. Goldfarb, Donald, Qin, Zhiwei: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Proceedings of Advances in Neural Information Processing Systems, pp. 2080–2088 (2009)

  23. Meng, D., Xu, Z., Zhang, L., and Zhao, J.: A cyclic weighted median method for l1 low-rank matrix factorization with missing entries. In: Proceedings of the Association for the Advancement of Artificial Intelligence, vol. 4, pp. 6 (2013)

  24. Meng, DeYu., Zhang, Biao, ZongBen, Xu, Zhang, Lei, Gao, ChenQiang: Robust low-rank tensor factorization by cyclic weighted median. Sci. China Inform. Sci. 58(5), 1–11 (2015)

    MathSciNet  Google Scholar 

  25. Huang, Tao, Dong, Weisheng, Xie, Xuemei, Shi, Guangming, Bai, Xiang: Mixed noise removal via laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans. Image Process. 26(7), 3171–3186 (2017)

    Article  MathSciNet  Google Scholar 

  26. Dong, Weisheng, Shi, Guangming, Li, Xin: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)

    Article  MathSciNet  Google Scholar 

  27. He, Wei, Zhang, Hongyan, Zhang, Liangpei, Shen, Huanfeng: Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 54(1), 178–188 (2016)

    Article  Google Scholar 

  28. Shi, Feng, Cheng, Jian, Wang, Li, Yap, Pew-Thian, Shen, Dinggang: Lrtv: Mr image super-resolution with low-rank and total variation regularizations. IEEE Trans. Med. Imaging 34(12), 2459–2466 (2015)

    Article  Google Scholar 

  29. Chang, Y., Yan, L., and Zhong, S.: Transformed low-rank model for line pattern noise removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1726–1734 (2017)

  30. Yokota, T., Erem, B., Guler, S., Warfield, S. K., and Hontani, H.: Missing slice recovery for tensors using a low-rank model in embedded space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8251–8259 (2018)

  31. Peng, J., Xie, Q., Zhao, Q., Wang, Y., Meng, D., and Leung, Y.: Enhanced 3dtv regularization and its applications on hyper-spectral image denoising and compressed sensing, arXiv preprint arXiv:1809.06591 (2018)

  32. Lorenz, Edward N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  33. Jain, V., and Seung, S.: Natural image denoising with convolutional networks. In: Proceedings of Advances in Neural Information Processing Systems, pp. 769–776 (2009)

  34. Burger, Harold C., Schuler, Christian J., Harmeling, Stefan.: Image denoising: can plain neural networks compete with bm3d?. In: Proceedings of Computer Vision and Pattern Recognition, pp. 2392–2399 (2012)

  35. Xie, J., Xu, L., and Chen, E.: Image denoising and inpainting with deep neural networks. In: Proceedings of Advances in Neural Information Processing Systems, pp. 341–349 (2012)

  36. Chen, Yunjin, Pock, Thomas: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  37. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  38. Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the International Conference on Machine Learning, pp. 1096–1103 (2008)

  39. Song, Guang-Jing: Zhang, Xiongjun, Jiang, Qiang, Ng. Robust tensor completion using transformed tensor singular value decomposition, Michael K (2018)

    Google Scholar 

  40. Xie, Yuan, Yanyun, Qu, Tao, Dacheng, Weiwei, Wu, Yuan, Qiangqiang, Zhang, Wensheng, et al.: Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization. IEEE Trans. Geosci. Remote Sens. 54(8), 4642–4659 (2016)

    Article  Google Scholar 

  41. Donoho, David L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  Google Scholar 

  42. Xie, Q., Zhao, Q., Meng, D., Xu, Z., Gu, S., Zuo, W., and Zhang, L.: Multispectral images denoising by intrinsic tensor sparsity regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2016)

  43. Liu, Z., Luo, P., Wang, X., and Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

  44. Martin, David, Fowlkes, Charless, Tal, Doron, Malik, Jitendra: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings of IEEE International Conference on Computer Vision 2, 416–423 (2001)

    Google Scholar 

  45. Sutskever, Ilya, Martens, James, Dahl, George, Hinton, Geoffrey: On the importance of initialization and momentum in deep learning, In: Proceedings of International conference on machine learning, pp. 1139–1147 (2013)

  46. He, K., Zhang, X., Ren, S., and Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp. 1026–1034 (2015)

  47. Burger, H. C., Schuler, C., and Harmeling, S.: Learning how to combine internal and external denoising methods. In: Proceedings of German Conference on Pattern Recognition, pp. 121–130 (2013)

  48. Lebrun, Marc, Colom, Miguel, Morel, Jean-Michel: The noise clinic: a blind image denoising algorithm. Image Process. On Line 5, 1–54 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61773367, Grant 61303168, and Grant 61821005, in part by the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant 2016183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Liu, B., Zhang, Y. et al. Low-rank decomposition on transformed feature maps domain for image denoising. Vis Comput 37, 1899–1915 (2021). https://doi.org/10.1007/s00371-020-01951-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01951-0

Keywords