Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Graph-based generative representation learning of semantically and behaviorally augmented floorplans

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Floorplans are commonly used to represent the layout of buildings. Research works toward computational techniques that facilitate the design process, such as automated analysis and optimization, often using simple floorplan representations that ignore the space’s semantics and do not consider usage-related analytics. We present a floorplan embedding technique that uses an attributed graph to model the floorplans’ geometric information, design semantics, and behavioral features as the node and edge attributes. A long short-term memory (LSTM) variational autoencoder (VAE) architecture is proposed and trained to embed attributed graphs as vectors in a continuous space. A user study is conducted to evaluate the coupling of similar floorplans retrieved from the embedding space for a given input (e.g., design layout). The qualitative, quantitative, and user study evaluations show that our embedding framework produces meaningful and accurate vector representations for floorplans. Besides, our proposed model is generative. We studied and showcased its effectiveness for generating new floorplans. We also release the dataset that we have constructed. We include the design semantic attributes and simulation-generated human behavioral features for each floorplan in the dataset for further study in the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. TPAMI 12, 2037–2041 (2006)

    Article  Google Scholar 

  2. Azizi, V., Usman, M., Patel, S., Schaumann, D., Zhou, H., Faloutsos24, P., Kapadia, M.: Floorplan embedding with latent semantics and human behavior annotations. In: Proceedings of the Symposium on Simulation for Architecture and Urban Design, pp. 43–50 (2020)

  3. Azizi, V., Usman, M., Zhou, H., Faloutsos, P., Kapadia, M.: Houseexpo dataset augmented with crowd behavioral features. https://github.com/VahidAz/Floorplan_dataset (2020)

  4. Bai, Y., Ding, H., Qiao, Y., Marinovic, A., Gu, K., Chen, T., Sun, Y., Wang, W.: Unsupervised inductive graph-level representation learning via graph-graph proximity. arXiv preprint arXiv:1904.01098 (2019)

  5. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  6. Berseth, G., Usman, M., Haworth, B., Kapadia, M., Faloutsos, P.: Environment optimization for crowd evacuation. Computer Anim. Virtual Worlds 26(3–4), 377–386 (2015)

    Article  Google Scholar 

  7. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Józefowicz, R., Bengio, S.: Generating sentences from a continuous space. CoRR abs/1511.06349 (2015). arxiv:1511.06349

  8. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: Problems, techniques and applications. CoRR abs/1709.07604 (2017). arxiv:1709.07604

  9. Chaillou, S.: Ai+ Architecture: Towards a New Approach. Harvard University, Cambridge (2019)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection (2005)

  11. Dutta, A., Llados, J., Pal, U.: Symbol spotting in line drawings through graph paths hashing. In: DAR, pp. 982–986. IEEE (2011)

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)

    Google Scholar 

  13. Feng, T., Yu, L.F., Yeung, S.K., Yin, K., Zhou, K.: Crowd-driven mid-scale layout design. ACM Trans. Graph. 35(4) (2016)

  14. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: Graphx: graph processing in a distributed dataflow framework. In: 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pp. 599–613 (2014)

  15. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD, pp. 855–864. ACM (2016)

  16. Haworth, B., Usman, M., Berseth, G., Kapadia, M., Faloutsos, P.: Evaluating and optimizing level of service for crowd evacuations. In: Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, pp. 91–96 (2015)

  17. Haworth, B., Usman, M., Berseth, G., Kapadia, M., Faloutsos, P.: On density-flow relationships during crowd evacuation. Computer Anim. Virtual Worlds 28(3–4), e1783 (2017)

    Google Scholar 

  18. de las Heras, L.P., Fernández, D., Fornés, A., Valveny, E., Sánchez, G., Lladós, J.: Runlength histogram image signature for perceptual retrieval of architectural floor plans. In: Workshop on Graphics Recognition, pp. 135–146. Springer (2013)

  19. Heylighen, A., Neuckermans, H.: A case base of case-based design tools for architecture. Computer-Aided Des. 33(14), 1111–1122 (2001)

    Article  Google Scholar 

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  21. Hu, R., Huang, Z., Tang, Y., van Kaick, O., Zhang, H., Huang, H.: Graph2plan: Learning floorplan generation from layout graphs. arXiv preprint arXiv:2004.13204 (2020)

  22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  24. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  25. Kumar, P., Huang, H.H.: G-store: high-performance graph store for trillion-edge processing. In: SC’16, pp. 830–841. IEEE (2016)

  26. Lambert, G., Gao, H.: Line moments and invariants for real time processing of vectorized contour data. In: International Conference on Image Analysis and Processing, pp. 347–352. Springer (1995)

  27. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, vol. 2, pp. 2169–2178. IEEE (2006)

  28. Li, T., Ho, D., Li, C., Zhu, D., Wang, C., Meng, M.Q.H.: Houseexpo: A large-scale 2d indoor layout dataset for learning-based algorithms on mobile robots (2019)

  29. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed graphlab: A framework for machine learning in the cloud. arXiv preprint arXiv:1204.6078 (2012)

  30. Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  31. Merrell, P., Schkufza, E., Koltun, V.: Computer-generated residential building layouts. In: ACM SIGGRAPH Asia 2010 papers, pp. 1–12 (2010)

  32. Mousavi, S.F., Safayani, M., Mirzaei, A., Bahonar, H.: Hierarchical graph embedding in vector space by graph pyramid. Pattern Recognit. 61, 245–254 (2017)

    Article  Google Scholar 

  33. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  34. Nauata, N., Chang, K.H., Cheng, C.Y., Mori, G., Furukawa, Y.: House-gan: Relational generative adversarial networks for graph-constrained house layout generation (2020)

  35. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp. 2014–2023 (2016)

  36. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’14 (2014). https://doi.org/10.1145/2623330.2623732

  37. Richter, K., Heylighen, A., Donath, D.: Looking back to the future. an updated case base of case-based design tools for architecture. pp. 285–292 (2007)

  38. Rodrigues, E., Gaspar, A.R., Gomes, Á.: An evolutionary strategy enhanced with a local search technique for the space allocation problem in architecture, part 1: methodology. Computer-Aided Des. 45(5), 887–897 (2013)

    Article  Google Scholar 

  39. Rodrigues, E., Gaspar, A.R., Gomes, Á.: An evolutionary strategy enhanced with a local search technique for the space allocation problem in architecture, part 2: Validation and performance tests. Computer-Aided Des. 45(5), 898–910 (2013)

    Article  Google Scholar 

  40. Sabri, Q.U., Bayer, J., Ayzenshtadt, V., Bukhari, S.S., Althoff, K.D., Dengel, A.: Semantic pattern-based retrieval of architectural floor plans with case-based and graph-based searching techniques and their evaluation and visualization. In: ICPRAM, pp. 50–60 (2017)

  41. Sharma, D., Chattopadhyay, C.: High-level feature aggregation for fine-grained architectural floor plan retrieval. IET Computer Vis. 12(5), 702–709 (2018)

    Article  Google Scholar 

  42. Sharma, D., Chattopadhyay, C., Harit, G.: A unified framework for semantic matching of architectural floorplans. In: Pattern Recognition, pp. 2422–2427. IEEE (2016)

  43. Sharma, D., Gupta, N., Chattopadhyay, C., Mehta, S.: Daniel: A deep architecture for automatic analysis and retrieval of building floor plans. In: DAR, vol. 1, pp. 420–425. IEEE (2017)

  44. Shervashidze, N., Schweitzer, P., Leeuwen, E.J.V., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Simonovsky, M., Komodakis, N.: Graphvae: Towards generation of small graphs using variational autoencoders. In: International Conference on Artificial Neural Networks, pp. 412–422. Springer (2018)

  46. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: An open framework for developing, evaluating, and sharing steering algorithms. In: International Workshop on Motion in Games, pp. 158–169. Springer (2009)

  47. Sohn, S.S., Zhou, H., Moon, S., Yoon, S., Pavlovic, V., Kapadia, M.: Laying the foundations of deep long-term crowd flow prediction. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

  48. Taheri, A., Gimpel, K., Berger-Wolf, T.: Learning graph representations with recurrent neural network autoen-coders. KDD Deep Learning Day (2018)

  49. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. Icml 1, 577–584 (2001)

    Google Scholar 

  50. Wang, W., Gan, Z., Xu, H., Zhang, R., Wang, G., Shen, D., Chen, C., Carin, L.: Topic-guided variational autoencoders for text generation. arXiv preprint arXiv:1903.07137 (2019)

  51. Weber, M., Liwicki, M., Dengel, A.: A. scatch-a sketch-based retrieval for architectural floor plans. In: Frontiers in Handwriting Recognition, pp. 289–294. IEEE (2010)

  52. Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H., Liu, L.: Data-driven interior plan generation for residential buildings. ACM Trans. Gr. (TOG) 38(6), 1–12 (2019)

    Google Scholar 

Download references

Acknowledgements

This research has been partially funded by grants from ISSUM, Ontario Graduate Scholarship, and in part by NSF awards: IIS-1703883, IIS-1955404, and IIS-1955365. The authors would also like to thank Mathew Schwartz for helping in editing and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Azizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, V., Usman, M., Zhou, H. et al. Graph-based generative representation learning of semantically and behaviorally augmented floorplans. Vis Comput 38, 2785–2800 (2022). https://doi.org/10.1007/s00371-021-02155-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02155-w

Keywords