Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A dynamic range adjustable inverse tone mapping operator based on human visual system

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Conventional inverse tone mapping operator (iTMO) reconstructs high dynamic range (HDR) images with fixed dynamic range and tend to produce extended distortion in both high and low exposure regions of HDR images. This paper proposes a dynamic range adjustable inverse tone mapping algorithm based on single LDR image, which combined photoreceptor response and adaptation. Firstly, the linearized image is converted to retinal response in the LDR environment. Then, it is extended to obtain the retinal response corresponding to HDR scenes. This extension can also be adjusted according to the target dynamic range. Since the different states of light adaptation, expanded retinal response is converted into a set of HDR images with different exposure background intensity. The corresponding processing for different exposure regions can effectively reduce the distortion of high exposure and low exposure regions. Finally, this group of HDR images is synthesized base on the corresponding weighted graph. The efficiency and high visual quality of the proposed algorithm are validated in open-source datasets, and the superior performance of proposed algorithm is also proved by objective evaluations of different types of LDR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kunkel, T., Daly, S., Miller, S., Froehlich, J.: Perceptual design for high dynamic range systems. In: High Dynamic Range Video. pp. 391–430 (2016). https://doi.org/10.1016/B978-0-08-100412-8.00015-2

    Chapter  Google Scholar 

  2. Akyüz, A.O., Fleming, R., Riecke, B.E., Reinhard, E., Bülthoff, H.H.: Do HDR displays support LDR content? A psychophysical evaluation. ACM Trans. Gr. 26, 381–387 (2007). https://doi.org/10.1145/1276377.1276425

    Article  Google Scholar 

  3. Masia, B., Agustin, S., Fleming, R.W., Sorkine, O., Gutierrez, D.: Evaluation of reverse tone mapping through varying exposure conditions. ACM Trans. Gr. (2009). https://doi.org/10.1145/1661412.1618506

    Article  Google Scholar 

  4. R. P. Kovaleski and M. M. Oliveira, High-quality reverse tone mapping for a wide range of exposures. In: 27th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 49–56, (2014). https://doi.org/10.1109/SIBGRAPI.2014.29

  5. Huo, Y., Yang, F., Dong, L., Brost, V.: Physiological inverse tone mapping based on retina response. Visual Comput. (2014). https://doi.org/10.1007/s00371-013-0875-4

    Article  Google Scholar 

  6. Kuo P-H, Liang H-J, Tang C-S, Chien S-Y.: Automatic high dynamic range hallucination in inverse tone mapping. In: IEEE 16th International Workshop on Multimedia Signal Processing, pp. 1–6, (2014). https://doi.org/10.1109/MMSP.2014.6958828

  7. Wang, T.-H., Chiu, C.-W., Wu, W.-C., Wang, J.-W., Lin, C.-Y., Chiu, C.-T., Liou, J.-J.: Pseudo-multiple-exposure-based tone fusion with local region adjustment. IEEE Trans. Multimed. (2015). https://doi.org/10.1109/TMM.2015.2403612

    Article  Google Scholar 

  8. Bist, C., Cozot, R., Madec, G., Ducloux, X.: Tone expansion using lighting style aesthetics. Comput. Gr. (2017). https://doi.org/10.1016/j.cag.2016.12.006

    Article  Google Scholar 

  9. Pedram, M., Pourazad, M.T., Nasiopoulos, P.: A perception-based inverse tone mapping operator for high dynamic range video applications. IEEE Trans. Circuits Syst. Video Technol. 31(5), 1711–1723 (2021). https://doi.org/10.1109/TCSVT.2020.3014679

    Article  Google Scholar 

  10. Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R.K., Unger, J.: HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Gr. 36(6), 1–15 (2017). https://doi.org/10.1145/3130800.3130816

    Article  Google Scholar 

  11. Endo, Y., Kanamori, Y., Mitani, J.: Deep reverse tone mapping. ACM Trans. Gr. 36(6), 1–10 (2017). https://doi.org/10.1145/3130800.3130834

    Article  Google Scholar 

  12. Marnerides, D., Bashford-Rogers, T., Hatchett, J., Debattista, K.: ExpandNet: A deep convolutional neural network for high dynamic range expansion from low dynamic range content. Comput. Gr. Forum 37, 37–49 (2018). https://doi.org/10.1111/cgf.13340

    Article  Google Scholar 

  13. Lee S, An G. H, Kang S-J.: Deep recursive HDRI: inverse tone mapping using generative adversarial networks. In: European Conference on Computer Vision, pp. 596–611, (2018). https://doi.org/10.1007/978-3-030-01216-8_37

  14. Liu Y-L et al., Single-image HDR reconstruction by learning to reverse the camera pipeline. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1648–1657, (2020). https://doi.org/10.1109/CVPR42600.2020.00172

  15. Kim, D., Kim, M.: Learning-based low-complexity reverse tone mapping with linear mapping. IEEE Trans. Circuits Syst. Video Technol. 30(2), 400–414 (2020). https://doi.org/10.1109/TCSVT.2019.2892438

    Article  Google Scholar 

  16. Mann S, Picard R. W.: On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: Proceedings of IS&T, pp. 442–448, (1995).

  17. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. ACM SIGGRAPH Comput. Gr. 97, 369–378 (1997). https://doi.org/10.1145/1401132.1401174

    Article  Google Scholar 

  18. Yan, Q., Zhu, Y., Zhang, Y.: Robust artifact-free high dynamic range imaging of dynamic scenes. Multimed. Tools Appl. 78, 11487–11505 (2019). https://doi.org/10.1007/s11042-018-6625-x

    Article  Google Scholar 

  19. Qingsen Yan, Yu., Zhu, Y.Z., Sun, J., Zhang, L., Zhang, Y.: Enhancing image visuality by multi-exposure fusion. Pattern Recogn. Lett. 127, 66–75 (2019). https://doi.org/10.1016/j.patrec.2018.10.008

    Article  Google Scholar 

  20. Yan Q, Gong D, Shi Q.: Attention-guided Network for ghost-free high dynamic range imaging. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1751–1760, (2019). https://doi.org/10.1109/CVPR.2019.00185

  21. Yan, Q., Zhang, L., Liu, Y., et al.: Deep HDR Imaging via A Non-Local Network. IEEE Trans. Image Process. (2020). https://doi.org/10.1109/TIP.2020.2971346

    Article  MATH  Google Scholar 

  22. Yan, Q., Sun, J., Li, H., et al.: High dynamic range imaging by sparse representation. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.03.083

    Article  Google Scholar 

  23. Yan Q, Gong D, Zhang P, et al., Multi-scale dense networks for deep high dynamic range imaging. In: IEEE Winter Conference on Applications of Computer Vision, pp. 41–50, (2019). https://doi.org/10.1109/WACV.2019.00012

  24. Yan, Q., Wang, B., Li, P., et al.: Ghost removal via channel attention in exposure fusion. Comput. Vis. Image Underst. (2020). https://doi.org/10.1016/j.cviu.2020.103079

    Article  Google Scholar 

  25. Yan, Q., Wang, B., Zhang, L., et al.: Towards accurate HDR imaging with learning generator constraints. Neurocomputing (2021). https://doi.org/10.1016/j.neucom.2020.11.056

    Article  Google Scholar 

  26. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S.: High Dynamic Range Imaging: Acquisition, Display, and Image-based Lighting, pp. 405–436. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  27. Kortum, P.T., Geisler, W.S.: Adaptation mechanisms in spatial vision—II. Flash thresholds and background adaptation. Vision. Res. 35(11), 1595–1609 (1995). https://doi.org/10.1016/0042-6989(94)00206-2

    Article  Google Scholar 

  28. Dowling, J.E.: The Retina: An Approachable Part of the Brain, pp. 175–176. Belknap Press of Harvard University Press, Cambridge (1988)

    Google Scholar 

  29. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  30. Geisler, W.S.: Adaptation, afterimages and cone saturation. Vision. Res. 18(3), 279–289 (1978). https://doi.org/10.1016/0042-6989(78)90162-1

    Article  Google Scholar 

  31. Walraven, J., Enroth-Cugell, C., Hood, D.C., Macleod, D., Schnapf, J.L.: The control of visual sensitivity: receptoral and postreceptoral processes. Visual Percept. (1990). https://doi.org/10.1016/B978-0-12-657675-7.50011-9

    Article  Google Scholar 

  32. Robertson M, Borman S, Stevenson R.: Dynamic range improvement through multiple exposures. In: Proceedings 1999 International Conference on Image Processing 3: 159–163, (1999). https://doi.org/10.1109/ICIP.1999.817091

  33. Hall, R.: Illumination and Color in Computer Generated Imagery, pp. 45–61. Springer, Berlin (1989)

    Google Scholar 

  34. Reinhard, E., Kunkel, T., Marion, Y., Brouillat, J., Cozot, R., Bouatouch, K.: Image-display algorithms for high- and low-dynamic-range display devices. Inf. Disp. 23(12), 39 (2007). https://doi.org/10.1889/1.2825110

    Article  Google Scholar 

  35. Nemoto H, Korshunov P, Hanhart P, Ebrahimi T.: Visual attention in LDR and HDR images. In: International Workshop on Video Processing and Quality Metrics for Consumer Electronics, (2015).

  36. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP- 2: A Calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Gr. (2011). https://doi.org/10.1145/2010324.1964935

    Article  Google Scholar 

  37. Aydin, T.O., Mantiuk, R., Seidel, H.P.: Extending quality metrics to full luminance range images. Proc. SPIE – Int. Soc. Opt. Eng. 6806, 68 (2008). https://doi.org/10.1117/12.765095

    Article  Google Scholar 

  38. Liang Z, Xu J, Zhang D, Cao Z, Zhang L.: A Hybrid L1-L0 layer decomposition model for tone mapping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4758–4766, (2018). https://doi.org/10.1109/CVPR.2018.00500

  39. Rana, A., Singh, P., Valenzise, G., Dufaux, F., Komodakis, N., Smolic, A.: Deep tone mapping operator for high dynamic range images. IEEE Trans. Image Process. 29, 1285–1298 (2020). https://doi.org/10.1109/TIP.2019.2936649

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufan Zhang.

Ethics declarations

Conflict of interest

Author Yufan Zhang declares that he has no conflict of interest. Author Wenbiao Zhou declares that he has no conflict of interest. Author Jinling Xu declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, W. & Xu, J. A dynamic range adjustable inverse tone mapping operator based on human visual system. Vis Comput 39, 413–427 (2023). https://doi.org/10.1007/s00371-021-02338-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02338-5

Keywords