Abstract
Effectively identifying attacked faces is an urgent problem to be solved in the scenario of face recognition. As deep learning is applied to face anti-spoofing (FAS), many multi-modal approaches have been proven to be more efficient than single-modal, but at the same time, multi-modal approaches require a huge number of parameters and therefore result in high computation. To tackle this problem, a lightweight network-based multi-modal FAS model was proposed, which took patch-level images from multi-modal images (YCbCr, Depth, and IR) as the input to different branches, and designed a lightweight feature extraction module to solve the redundancy of feature maps extracted by the filters. Finally, an attention-based feature fusion module was constructed to fuse and classify the features extracted by each branch network. A great number of comparative experimental results demonstrated that this method greatly reduced parameters at a high accuracy. For example, the accuracy on single-modal datasets (Replay-Attack and CASIA-FASD) is 100%, and that on multi-modal dataset (CASIA-SURF) is 98.1269% (TPR@FPR = 10e−4) and 0.2232%. In addition, the backbone network has only 0.25 M parameters and 0.37 G FLOPs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Pereira, T.D., Anjos, A., Martino, J.M., Marcel, S.: LBP–TOP based countermeasure against face spoofing attacks. ACCV Worksh. (2012). https://doi.org/10.1007/978-3-642-37410-4_11
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face antispoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 24, 141–145 (2017). https://doi.org/10.1109/LSP.2016.2630740
Yang, J., Lei, Z., Liao, S., Li, S.: Face liveness detection with component dependent descriptor. In: 2013 International Conference on Biometrics (ICB) (2013), pp. 1–6. https://doi.org/10.1109/ICB.2013.6612955
Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11, 1818–1830 (2016). https://doi.org/10.1109/TIFS.2016.2555286
Li, X., Komulainen, J., Zhao, G., Yuen, P., Pietikäinen, M.: Generalized face anti-spoofing by detecting pulse from face videos. In: 2016 23rd International Conference on Pattern Recognition (ICPR) (2016), pp. 4244–4249. https://doi.org/10.1109/ICPR.2016.7900300
Lagorio, A., Tistarelli, M., Cadoni, M., Fookes, C., Sridharan, S.: Liveness detection based on 3D face shape analysis. In: 2013 International Workshop on Biometrics and Forensics (IWBF) (2013), pp. 1–4. https://doi.org/10.1109/IWBF.2013.6547310
Wang, Y., Nian, F., Li, T., Meng, Z., Wang, K.: Robust face anti-spoofing with depth information. J. Vis. Commun. Image Represent. 49, 332–337 (2017). https://doi.org/10.1016/j.jvcir.2017.09.002
Liu, S., Lan, X., Yuen, P.: Remote photoplethysmography correspondence feature for 3D mask face presentation attack detection. ECCV (2018). https://doi.org/10.1007/978-3-030-01270-0_34
Liu, Y., Stehouwer, J., Jourabloo, A., Liu, X.: Deep tree learning for zero-shot face anti-spoofing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 4675–4684. https://doi.org/10.1109/CVPR.2019.00481
Zhang, S., Wang, X., Liu, A., Zhao, C., Wan, J., Escalera, S., Shi, H., Wang, Z., Li, S.: A dataset and benchmark for large-scale multi-modal face anti-spoofing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 919–928. https://doi.org/10.1109/CVPR.2019.00101
Xin, J. et al.: Facial attribute capsules for noise face super resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07 (2020)
Xin, J., et al.: Video face super-resolution with motion-adaptive feedback cell. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07 (2020)
Parkin, A., Grinchuk, O.: Recognizing multi-modal face spoofing with face recognition networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019), pp. 1617–1623. https://doi.org/10.1109/CVPRW.2019.00204
Shen, T., Huang, Y., Tong, Z.: FaceBagNet: Bag-of-local-features model for multi-modal face anti-spoofing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019), pp. 1611–1616. https://doi.org/10.1109/CVPRW.2019.00203
Yu, Z., Zhao, C., Wang, Z., Qin, Y., Su, Z., Li, X., Zhou, F., Zhao, G.: Searching central difference convolutional networks for face anti-spoofing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 5294–5304. https://doi.org/10.1109/CVPR42600.2020.00534
Yu, Z., Qin, Y., Li, X., Wang, Z., Zhao, X., Lei, Z., Zhao, G: Multi-modal face anti-spoofing based on central difference networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2020), pp. 2766–2774. https://doi.org/10.1109/CVPRW50498.2020.00333
Yu, Z., Wan, J., Qin, Y., Li, X., Li, S., Zhao, G.: NAS-FAS: Static-dynamic central difference network search for face anti-spoofing. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3036338
Peng, C., Wang, N., Li, J., Gao, X.: DLFace: Deep local descriptor for cross-modality face recognition. Pattern Recognit. 90, 161–171 (2019). https://doi.org/10.1016/j.patcog.2019.01.041
Peng, C., Wang, N., Li, J., Gao, X.: Re-ranking high-dimensional deep local representation for NIR-VIS face recognition. IEEE Trans. Image Process. 28, 4553–4565 (2019). https://doi.org/10.1109/TIP.2019.2912360
Xin, J., Wang, N., Gao, X., Li, J.: Residual attribute attention network for face image super-resolution. AAAI (2019). https://doi.org/10.1609/aaai.v33i01.33019054
Jiang, X., Wang, N., Xin, J., Yang, X., Yu, Y., Gao, X.: Image super-resolution via multi-view information fusion networks. Neurocomputing 402, 29–37 (2020). https://doi.org/10.1016/j.neucom.2020.03.073
George, A., Marcel, S.: Cross modal focal loss for RGBD face anti-spoofing. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7878–7887 (2021). https://doi.org/10.1109/CVPR46437.2021.00779
Liu, A., Tan, Z., Li, X., Wan, J., Escalera, S., Guo, G., Li, S.: Static and dynamic fusion for multi-modal cross-ethnicity face anti-spoofing. ArXiv: abs/1912.02340 (2019)
Liu, A., Tan, Z., Li, X., Wan, J., Escalera, S., Guo, G., Li, S.Z.: CASIA-SURF CeFA: A benchmark for multi-modal cross-ethnicity face anti-spoofing. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV) (2021), pp. 1178–1186. https://doi.org/10.1109/WACV48630.2021.00122
Wang, Z., Yu, Z., Zhao, C., Zhu, X., Qin, Y., Zhou, Q., Zhou, F., Lei, Z.: Deep spatial gradient and temporal depth learning for face anti-spoofing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 5041–5050. https://doi.org/10.1109/CVPR42600.2020.00509
Zhang, P., Zou, F., Wu, Z., Dai, N., Mark, S., Fu, M., Zhao, J., Li, K.: FeatherNets: convolutional neural networks as light as feather for face anti-spoofing. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019), pp. 1574–1583. https://doi.org/10.1109/CVPRW.2019.00199
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2019.2913372
Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: Practical guidelines for efficient CNN architecture design. ECCV (2018). https://doi.org/10.1007/978-3-030-01264-9_8
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C.: GhostNet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165
Wu, B., Wan, A., Yue, X., Jin, P.H., Zhao, S., Golmant, N., Gholaminejad, A., Gonzalez, J.E., Keutzer, K.: Shift: a zero FLOP, zero parameter alternative to spatial convolutions. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 9127–9135. https://doi.org/10.1109/CVPR.2018.00951
Deng, J., Guo, J., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 4685–4694. https://doi.org/10.1109/CVPR.2019.00482
Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG: Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7 (2012)
Zhang, Z., Yan, J., Liu, S., Lei, X., Yi, D., Li, S.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB) (2012), pp. 26–31. https://doi.org/10.1109/ICB.2012.6199754
Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: binary or auxiliary supervision. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 389–398. https://doi.org/10.1109/CVPR.2018.00048
Kuang, H., Ji, R., Liu, H., Zhang, S., Sun, X., Huang, F., & Zhang, B. (2019). Multi-modal multi-layer fusion network with average binary center loss for face anti-spoofing. In: Proceedings of the 27th ACM International Conference on Multimedia. https://doi.org/10.1145/3343031.3351001
Arora, S., Bhatia, M.P., Mittal, V.: A robust framework for spoofing detection in faces using deep learning. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02123-4
Xu, Z., Li, S., Deng, W.: Learning temporal features using LSTM-CNN architecture for face anti-spoofing. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) (2015), pp. 141–145. https://doi.org/10.1109/ACPR.2015.7486482
Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and depth-based CNNs. In: 2017 IEEE International Joint Conference on Biometrics (IJCB) (2017), pp. 319–328. https://doi.org/10.1109/BTAS.2017.8272713
Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-spoofing approach using partial convolutional neural network. In: 2016 sixth international conference on image processing theory, tools and applications (IPTA) (2016), pp. 1–6. https://doi.org/10.1109/IPTA.2016.7821013
Sun, Y., Xiong, H., Yiu, S.: Understanding deep face anti-spoofing: from the perspective of data. Vis. Comput. 1–14 (2020). https://doi.org/10.1007/s00371-020-01849-x
Komulainen, J., Hadid, A., Pietikäinen, M., Anjos, A., Marcel, S.: Complementary countermeasures for detecting scenic face spoofing attacks. In: 2013 International Conference on Biometrics (ICB) (2013), pp. 1–7. https://doi.org/10.1109/ICB.2013.6612968
Khammari, M.: Robust face anti-spoofing using CNN with LBP and WLD. IET Image Process. 13, 1880–1884 (2019). https://doi.org/10.1049/iet-ipr.2018.5560
Yang, X., Luo, W., Bao, L., Gao, Y., Gong, D., Zheng, S., Li, Z., & Liu, W.: Face anti-spoofing: model matters, so does data. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3502–3511 (2019). https://doi.org/10.1109/CVPR.2019.00362
Li, X., Wan, J., Jin, Y., Liu, A., Guo, G., Li, S.: 3DPC-Net: 3D point cloud network for face anti-spoofing. In: 2020 IEEE International Joint Conference on Biometrics (IJCB) (2020), pp. 1–8. https://doi.org/10.1109/IJCB48548.2020.9304873
Jourabloo, A., Liu, Y., Liu, X.: Face de-spoofing: anti-spoofing via noise modeling. ECCV (2018). https://doi.org/10.1007/978-3-030-01261-8_18
Yang, J., Lei, Z., Li, S.: Learn convolutional neural network for face anti-spoofing. ArXiv: abs/1408.5601 (2014). https://doi.org/10.1007/978-3-319-21963-9_34
Acknowledgments
This work was supported by the Science and Technology Research Project of Chongqing Education Commission (Grant No. KJQN201900833), and the Scientific Research and Innovation Foundation of Chongqing, China (Grant No. CYS21398).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
He, D., He, X., Yuan, R. et al. Lightweight network-based multi-modal feature fusion for face anti-spoofing. Vis Comput 39, 1423–1435 (2023). https://doi.org/10.1007/s00371-022-02420-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-022-02420-6