Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-instance cancelable iris authentication system using triplet loss for deep learning models

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Many government and commercial organizations are using biometric authentication systems instead of a password or token-based authentication systems. They are computationally expensive if more users are involved. To overcome this problem, a biometric system can be created and deployed in the cloud which then can be used as a biometric authentication service. Privacy is the major concern with cloud-based authentication services as biometric is irrevocable. Many biometric authentication systems based on cancelable biometrics are developed to solve the privacy concern in the past few years. But the existing methods fail to maintain the trade-off between speed, security, and accuracy. To overcome this, we present a multi-instance cancelable iris system (MICBTDL). MICBTDL uses a convolutional neural network trained using triplet loss for feature extraction and stores the feature vector as a cancelable template. Our system uses an artificial neural network as the comparator module instead of the similarity measures. Experiments are carried on IITD and MMU iris databases to check the effectiveness of MICBTDL. Experimental results demonstrate that MICBTDL accomplishes fair performance when compared to other existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://pesonna.mmu.edu.my/ccteo/.

References

  1. Jartelius, M.: The 2020 data breach investigations report-a cso’s perspective. Netw. Secur. 2020(7), 9–12 (2020)

    Article  Google Scholar 

  2. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of multibiometrics: human recognition systems, vol. 6. Springer (2006)

  3. Jain, A.K., Flynn, P., Ross, A.A.: Handbook of biometrics. Springer, New York (2007)

    Google Scholar 

  4. Saini, R., Rana, N.: Comparison of various biometric methods. Int. J. Adv. Sci. Technol. 2(1), 24–30 (2014)

    Google Scholar 

  5. Daugman, J.: How iris recognition works. IEEE Trans. Cir. Sys. Video Technol. 14(1), 21–30 (2004). https://doi.org/10.1109/TCSVT.2003.818350

    Article  Google Scholar 

  6. Zhang, G., Chen, K., Xu, S., Cho, P.C., Nan, Y., Zhou, X., Lv, C., Li, C., Xie, G.: Lesion synthesis to improve intracranial hemorrhage detection and classification for ct images. Comput. Med. Imag. Graph. 90(101929), 1–14 (2021)

    Google Scholar 

  7. Zareen, F. J., Shakil, K. A., Alam, M., Jabin, S.: A cloud based mobile biometric authentication framework. CoRR (2016)

  8. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Priv. 1(2), 33–42 (2003)

    Article  Google Scholar 

  9. Galbally, J., Ross, A., Gomez-Barrero, M., Fierrez, J., Ortega-Garcia, J.: Iris image reconstruction from binary templates: an efficient probabilistic approach based on genetic algorithms. Comput. Vis. Image Underst. 117(10), 1512–1525 (2013)

    Article  Google Scholar 

  10. Venugopalan, S., Savvides, M.: How to generate spoofed irises from an iris code template. IEEE Trans. Inf. Foren. Secur. 6(2), 385–395 (2011)

    Article  Google Scholar 

  11. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE Signal Process. Mag. 32(5), 54–65 (2015)

    Article  Google Scholar 

  12. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biometrics. EURASIP J. Inf. Secur. 1, 1–25 (2011)

    Google Scholar 

  13. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 1–35 (2018)

    Article  Google Scholar 

  14. El-Hameed, H. A. A., Ramadan, N., El-Shafai, W., Khalaf, A.A., Ahmed, H. E. H., Elkhamy, S.E., El-Samie, F. E. A.: Cancelable biometric security system based on advanced chaotic maps. The Visual Computer pp 1–17 (2021)

  15. Abdellatef, E., Ismail, N.A., Abd Elrahman, S.E.S., Ismail, K.N., Rihan, M., Abd El-Samie, F.E.: Cancelable multi-biometric recognition system based on deep learning. Vis. Comput. 36(6), 1097–1109 (2020)

    Article  Google Scholar 

  16. Gupta, K., Walia, G.S., Sharma, K.: Novel approach for multimodal feature fusion to generate cancelable biometric. Vis. Comput. 37(6), 1401–1413 (2021)

    Article  Google Scholar 

  17. Gomez-Barrero, M., Rathgeb, C., Li, G., Ramachandra, R., Galbally, J., Busch, C.: Multi-biometric template protection based on bloom filters. Inform. Fus. 42, 37–50 (2018)

    Article  Google Scholar 

  18. Kumar, M.M., Prasad, M.V., Raju, U.: Iris template protection using discrete logarithm. In: proceedings of the 2018 2nd international conference on biometric engineering and applications, pp 43–49 (2018)

  19. Rathgeb, C., Uhl, A., Wild, P., Hofbauer, H.: Design decisions for an iris recognition sdk. In: Handbook of iris recognition, Springer, pp 359–396 (2016)

  20. Sibai, F.N., Hosani, H.I., Naqbi, R.M., Dhanhani, S., Shehhi, S.: Iris recognition using artificial neural networks. Exp. Syst. Appl. 38(5), 5940–5946 (2011)

    Article  Google Scholar 

  21. Khedkar, M.M., Ladhake, S.: Robust human iris pattern recognition system using neural network approach. In: 2013 international conference on information communication and embedded systems (ICICES), IEEE, pp 78–83 (2013)

  22. Rai, H., Yadav, A.: Iris recognition using combined support vector machine and hamming distance approach. Exp. Syst. Appl. 41(2), 588–593 (2014)

    Article  Google Scholar 

  23. Srivastava, V., Tripathi, B.K., Pathak, V.K.: Biometric recognition by hybridization of evolutionary fuzzy clustering with functional neural networks. J. Ambient. Intell. Humaniz. Comput. 5(4), 525–537 (2014)

    Article  Google Scholar 

  24. Saminathan, K., Chakravarthy, T., Devi, M.C.: Iris recognition based on kernels of support vector machine. ICTACT J. Soft Comput. 5(5), 889–895 (2015)

    Google Scholar 

  25. De Marsico, M., Petrosino, A., Ricciardi, S.: Iris recognition through machine learning techniques: a survey. Pattern Recogn. Lett. 82, 106–115 (2016)

    Article  Google Scholar 

  26. Ahmadi, N., Akbarizadeh, G.: Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional gabor features and multi-layer perceptron neural network/pso. Iet Biomet. 7(2), 153–162 (2017)

    Article  Google Scholar 

  27. Khan, M.F.F., Akif, A., Haque, M.: Iris recognition using machine learning from smartphone captured images in visible light. In: 2017 IEEE international conference on telecommunications and photonics (ICTP), IEEE, pp 33–37 (2017)

  28. Ahmadi, N., Akbarizadeh, G.: Iris tissue recognition based on gldm feature extraction and hybrid mlpnn-ica classifier. Neural Comput. Appl. 32, 1–15 (2020)

    Article  Google Scholar 

  29. Al-Waisy, A.S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T.A.: A multi-biometric iris recognition system based on a deep learning approach. Pattern Anal. Appl. 21(3), 783–802 (2018)

    Article  MathSciNet  Google Scholar 

  30. Arsalan, M., Kim, D.S., Lee, M.B., Owais, M., Park, K.R.: Fred-net: fully residual encoder-decoder network for accurate iris segmentation. Exp. Syst. Appl. 122, 217–241 (2019)

    Article  Google Scholar 

  31. Zhao, Z., Kumar, A.: A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features. Pattern Recogn. 93, 546–557 (2019)

    Article  Google Scholar 

  32. Wang, K., Kumar, A.: Cross-spectral iris recognition using cnn and supervised discrete hashing. Pattern Recogn. 86, 85–98 (2019)

    Article  Google Scholar 

  33. Adamović, S., Miškovic, V., Maček, N., Milosavljević, M., Šarac, M., Saračević, M., Gnjatović, M.: An efficient novel approach for iris recognition based on stylometric features and machine learning techniques. Futur. Gener. Comput. Syst. 107, 144–157 (2020)

    Article  Google Scholar 

  34. Gale, A., Salankar, S.: Analysis of iris identification system by using hybrid based pso classifier. In: ICDSMLA 2019, Springer, pp 117–130 (2020)

  35. Sudhakar, T., Gavrilova, M.: Multi-instance cancelable biometric system using convolutional neural network. In: 2019 international conference on cyberworlds (CW), IEEE, pp 287–294 (2019)

  36. Sudhakar, T., Gavrilova, M.: Cancelable biometrics using deep learning as a cloud service. IEEE Access 8, 112932–112943 (2020)

    Article  Google Scholar 

  37. Morampudi, M.K., Prasad, M.V., Raju, U.: Privacy-preserving iris authentication using fully homomorphic encryption. Multimed. Tools Appl. 79(27/28), 19215–19237 (2020)

    Article  Google Scholar 

  38. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 815–823 (2015)

  39. Kertész, G.: Different triplet sampling techniques for lossless triplet loss on metric similarity learning. In: 2021 IEEE 19th world symposium on applied machine intelligence and informatics (SAMI), IEEE, pp 000449–000454 (2021)

  40. Li, X., He, M., Li, H., Shen, H.: A combined loss-based multiscale fully convolutional network for high-resolution remote sensing image change detection. IEEE Geosci. Remote Sens. Lett. (2021). https://doi.org/10.1109/LGRS.2021.3098774

    Article  Google Scholar 

  41. Zheng, A.: iris recognition. http://andyzeng.github.io/irisrecognition/, accessed: 10-04-2020 (2020)

  42. Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn. 43(3), 1016–1026 (2010)

    Article  MATH  Google Scholar 

  43. Rajasekar, V., Premalatha, J., Sathya, K.: Cancelable iris template for secure authentication based on random projection and double random phase encoding. Peer-to-Peer Netw. Appl. 14(2), 747–762 (2021)

    Article  Google Scholar 

  44. Sadhya, D., Raman, B.: Generation of cancelable iris templates via randomized bit sampling. IEEE Trans. Inf. Foren. Secur. 14(11), 2972–2986 (2019)

    Article  Google Scholar 

  45. Morampudi, M.K., Prasad, M.V., Raju, U.: Privacy-preserving and verifiable multi-instance iris remote authentication using public auditor. Appl. Intell. (2021). https://doi.org/10.1007/s10489-021-02187-8

    Article  Google Scholar 

  46. Kumar, M.M., Prasad, M.V., Raju, U.: Bmiae: blockchain-based multi-instance iris authentication using additive elgamal homomorphic encryption. IET Biomet. 9(4), 165–177 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Morampudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhya, M., Morampudi, M.K., Pruthweraaj, I. et al. Multi-instance cancelable iris authentication system using triplet loss for deep learning models. Vis Comput 39, 1571–1581 (2023). https://doi.org/10.1007/s00371-022-02429-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02429-x

Keywords