Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An efficient content-based medical image retrieval based on a new Canny steerable texture filter and Brownian motion weighted deep learning neural network

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The increasing size of medical image repositories is due to the increasing number of digital imaging data sources. Most of the image content descriptors proposed in the literature are not suitable for the retrieval of large medical image datasets. The ability to extract features from an image is a vital criterion that should be considered to evaluate retrieval efficacy. This paper proposes an efficient image retrieval system for medical applications based on the new Canny steerable texture filter (CSTF) feature descriptor and Brownian motion weighting deep learning neural network (BMWDLNN) classifier. Initially, Modified Kuan Filter (MKF) is used to condense the noise in images. Then, the image contrast is enhanced using the Gaussian Linear Contrast Stretching Model (GLCSM) method. Then, the image features are extracted using the CSTF method. Later, the dimensionality of the extracted features is reduced by means of the Mean Correlation Coefficient Component Analysis (MCCCA) method and then the BMWDLNN classifier is applied. For the classified images, the score values are calculated using the Harmonic Mean-based Fisher Score (HMFS) method. Thereafter, various distance values are calculated for the score value of the image and are summed up to find the average. The retrieval outcome is determined by the minimum distance between database images and the query image. The proposed method obtained an average precision rate of 0.9981, 0.9992, 0.9951, and 0.9940 for EXACT-09, TCIA, NEMA-CT, and OASIS databases, respectively. The experimental results revealed that the proposed methodology outperforms the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sezavar, A., Farsi, H., Mohamadzadeh, S.: Content-based image retrieval by combining convolutional neural networks and sparse representation. Multimedia Tools Appl. 78(6), 1–18 (2019)

    Google Scholar 

  2. Agarwal, M., Singhal, A., Lall, B.: Multi-channel local ternary pattern for content-based image retrieval. Pattern Anal. Appl. 22(8), 1–12 (2019)

    MathSciNet  Google Scholar 

  3. Hussain, C.A., Rao, D.V., Mastani, A.S.: RetrieveNet a novel deep network for medical image retrieval. Evol. Intel. (2020). https://doi.org/10.1007/s12065-020-00401-z

    Article  Google Scholar 

  4. Ashraf, R., Ahmed, M., Ahmad, U., AsifHabib, M., Jabbar, S., Naseer, K.: MDCBIR-MF multimedia data for content-based image retrieval by using multiple features. Multimed Tools Appl. (2018). https://doi.org/10.1007/s11042-018-5961-1

    Article  Google Scholar 

  5. Biji, K.R., Marikkannu, P.: An efficient content based image retrieval using an optimized neural network for medical application. Multimedia Tools Appl. 79(19), 1–16 (2020)

    Google Scholar 

  6. Mezzoudj, S., Behloul, A., Seghir, R., Saadna, Y.: A parallel content-based image retrieval system using spark and tachyon frameworks. J. King Saud Univ. Comput. Inf. Sci. (2019). https://doi.org/10.1016/j.jksuci.2019.01.003

    Article  Google Scholar 

  7. Sathiamoorthy, S., Natarajan, M.: An efficient content based image retrieval using enhanced multi-trend structure descriptor. SN Appl. Sci. 2(217), 1–19 (2019)

    Google Scholar 

  8. Ghrabat, M.J.J., Ma, G., Alresheedi, I.Y.M.S.S., Abduljabbar, Z.A.: An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier. HCIS 9(31), 1–29 (2019)

    Google Scholar 

  9. Bressana, R.S., Bugatti, P.H., Saito, P.T.M.: Breast cancer diagnosis through active learning in content-based image retrieval. Neurocomputing 357, 1–10 (2019)

    Article  Google Scholar 

  10. Mistry, Y.D.: Textural and color descriptor fusion for efficient content-based image retrieval algorithm. Iran J. Comput. Sci. 3(16), 1–15 (2020)

    Google Scholar 

  11. Garg, M., Dhiman, G.: A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-05017-z

    Article  Google Scholar 

  12. Alsmad, M.K.: Content-based image retrieval using color, shape and texture descriptors and features. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04384-y

    Article  Google Scholar 

  13. Nair, L.R., Subramaniam, K., Venkatesan, P.G.K.D.: An effective image retrieval system using machine learning and fuzzy c- means clustering approach. Multimedia Tools Appl. (2019). https://doi.org/10.1007/s11042-019-08090-2

    Article  Google Scholar 

  14. Jeyakumar, V., Kanagaraj, B.: A medical image retrieval system in PACS environment for clinical decision making. Intell. Data Anal. Biomed. Appl. (2019). https://doi.org/10.1016/B978-0-12-815553-0.00006-9

    Article  Google Scholar 

  15. Urk, ŞO.: Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2020.113693

    Article  Google Scholar 

  16. Mirasadi, M.S., Foruzan, A.H.: Content-based medical image retrieval of CT images of liver lesions using manifold learning. Int. J. Multimedia Inf. Retriev. 8(9), 1–8 (2019). https://doi.org/10.1007/s13735-019-00179-6

    Article  Google Scholar 

  17. Biswas, R., Roy, S., Purkayastha, D.: An efficient content-based medical image indexing and retrieval using local texture feature descriptors. Int. J. Multimedia Inf. Retriev. 8(6), 1–15 (2019). https://doi.org/10.1007/s13735-019-00176-9

    Article  Google Scholar 

  18. Kasban, H., Salama, D.H.: A robust medical image retrieval system based on wavelet optimization and adaptive block truncation coding. Multimedia Tools Appl. 78(2), 1–26 (2019)

    Google Scholar 

  19. Shamna, P., Govindan, V.K., Abdul-Nazeer, K.A.: Content based medical image retrieval using topic and location model. J. Biomed. Inf. 91, 1–16 (2019)

    Article  Google Scholar 

  20. Mandal, M., Chaudhary, M., Vipparthi, S.K., Murala, S., Gonde, A.B., Nagar, S.K.: ANTIC antithetic isomeric cluster patterns for medical image retrieval and change detection. IET Comput. Vis. 13(1), 31–43 (2019)

    Article  Google Scholar 

  21. Swati, Z.N.K., et al.: Content-based brain tumor retrieval for MR images using transfer learning. IEEE Access 7, 17809–17822 (2019). https://doi.org/10.1109/ACCESS.2019.2892455

    Article  Google Scholar 

  22. Sundararajan, S.K., Sankaragomathi, B., Saravana-Priya, D.: Deep belief CNN feature representation based content based image retrieval for medical images. J. Med. Syst. 43, 1–9 (2019)

    Article  Google Scholar 

  23. Cai, Y., Li, Y., Qiu, C., Ma, J., Gao, X.: Medical image retrieval based on convolutional neural network and supervised hashing. IEEE Access 7, 51877–51885 (2019)

    Article  Google Scholar 

  24. Shinde, A., Rahulkar, A., Patil, C.: Content based medical image retrieval based on new efficient local neighborhood wavelet feature descriptor. Biomed. Eng. Lett. (2019). https://doi.org/10.1007/s13534-019-00112-0

    Article  Google Scholar 

  25. Owais, M., Arsalan, M., Choi, J., Park, K.R.: Effective diagnosis and treatment through content-based medical image retrieval (CBMIR) by using artificial intelligence. J. Clin. Med. 8(4), 462 (2019). https://doi.org/10.3390/jcm8040462

    Article  Google Scholar 

  26. Karthik, K., Kamath, S.S.: A deep neural network model for content-based medical image retrieval with multi-view classification. Vis. Comput. 37, 1837–1850 (2021). https://doi.org/10.1007/s00371-020-01941-2

    Article  Google Scholar 

  27. Gai, S.: Color image denoising via monogenic matrix-based sparse representation. Vis. Comput. 35, 109–122 (2019). https://doi.org/10.1007/s00371-017-1456-8

    Article  Google Scholar 

  28. Jia, F., Wong, W.H., Zeng, T.: DDUNet: dense dense U-net with applications in image denoising. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW) 2021, 354–364 (2021). https://doi.org/10.1109/ICCVW54120.2021.00044

    Article  Google Scholar 

  29. Jia, F., Ma, L., Yang, Y., Zeng, T.: Pixel-attention CNN with color correlation loss for color image denoising. IEEE Signal Process. Lett. 28, 1600–1604 (2021)

    Article  Google Scholar 

  30. Zhang, R., Du, T., Qu, S.: A principal component analysis algorithm based on dimension reduction window. IEEE Access 6, 63737–63747 (2018). https://doi.org/10.1109/ACCESS.2018.2875270

    Article  Google Scholar 

  31. Sanchez, A., Raya, L., Mohedano-Munoz, M.A., et al.: Feature selection based on star coordinates plots associated with eigenvalue problems. Vis. Comput. 37, 203–216 (2021). https://doi.org/10.1007/s00371-020-01793-w

    Article  Google Scholar 

  32. Lo, P., Van Ginneken, B., Reinhardt, J.M., Yavarna, T., De Jong, P.A., Irving, B., De Bruijne, M.: Extraction of airways from CT (EXACT’09). IEEE Trans. Med. Imaging 31(11), 2093–2107 (2012)

    Article  Google Scholar 

  33. Das, P., Neelima, A.: An overview of approaches for content-based medical image retrieval. Int. J. Multimedia Inf. Retrieval 6(4), 271–280 (2017)

    Article  Google Scholar 

  34. NEMA-CT image database: ftp://medical.nema.org/medical/Dicom/Multiframe (2020)

  35. Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Fast discrete curvelet transform-based anisotropic feature extraction for biomedical image indexing and retrieval. Int. J. Multimedia Inf. Retrieval 6(4), 281–288 (2017)

    Article  Google Scholar 

  36. Lan, R., Zhou, Y.: Medical image retrieval via histogram of compressed scattering coefficients. IEEE J. Biomed. Health Inf. 21, 1338–1346 (2017)

    Article  Google Scholar 

  37. Lan, R., Wang, H., Zhong, S., Liu, Z., Luo, X.: An integrated scattering feature with application to medical image retrieval. Comput. Electr. Eng. 69, 669–675 (2018)

    Article  Google Scholar 

  38. Shinde, A., Rahulkar, A., Patil, C.: Biomedical image indexing and retrieval based on new efficient hybrid approach using directional decomposition and a novel local directional frequency encoded pattern: a post feature descriptor. Multimed. Tools Appl. 78, 23489–23519 (2019). https://doi.org/10.1007/s11042-019-7697-y

    Article  Google Scholar 

  39. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010). https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Murala, S., Maheshwari, R., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Murala, S., Wu, Q.J.: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119, 399–412 (2013)

    Article  Google Scholar 

  43. Murala, S., Wu, Q.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inf. 18(3), 929–938 (2014)

    Article  Google Scholar 

  44. Murala, S., Wu, Q.J.: Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149, 1502–1514 (2015)

    Article  Google Scholar 

  45. Dubey, S.R., Singh, S.K., Singh, R.K.: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 24(12), 5892–5903 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dubey, S.R., Roy, S.K., Chakraborty, S., et al.: Local bit-plane decoded convolutional neural network features for biomedical image retrieval. Neural Comput. Appl. 32, 7539–7551 (2020)

    Article  Google Scholar 

  47. Murala, S., MaheshwariBalasubramanian, R.P.R.: Directional binary wavelet patterns for biomedical image indexing and retrieval. J. Med. Syst. 36, 2865–2879 (2012)

    Article  Google Scholar 

  48. Deep, G., Kaur, L., Gupta, S.: Directional local ternary quantized extrema pattern: a new descriptor for biomedical image indexing and retrieval. Eng. Sci. Technol. Int. J. 19(4), 1895–1909 (2016)

    Google Scholar 

  49. Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Local neighboring binary pattern: a new feature descriptor for biomedical image indexing and retrieval. Signal Image Process. 2017, 154–159 (2017). https://doi.org/10.1109/SIPROCESS.2017.8124524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Varaprasada Rao.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest in the submission of this article for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.V., Prasad, T.J.C. An efficient content-based medical image retrieval based on a new Canny steerable texture filter and Brownian motion weighted deep learning neural network. Vis Comput 39, 1797–1813 (2023). https://doi.org/10.1007/s00371-022-02446-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02446-w

Keywords