Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Shape reconstruction from depth gradient with artificially periodized boundaries

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

For reconstructing the shape of an object from measured depth gradient field, the most popular two kinds are FFT-based integration methods and least-squares integration methods. For the former, it is time-efficient which should be attributed to the employment of FFT algorithms. However, the FFT algorithm usually implies periodic boundary which may be improper for non-periodic problems. This makes them less accurate than those least-squares integration methods. To avoid this deficiency, an algorithm is proposed by modifying the derivatives of endpoints to meet the numerical difference expression on a periodic domain. And the compact finite difference schemes are introduced to reduce the numerical error caused by the finite difference approximation of derivatives. The results of numerical tests show that the accuracy and robustness of the new non-iterative artificially-periodized-boundaries method are close to that of the state-of-art least-squares integration approach. Furthermore, its computational complexity is the same as a standard FFT-based integration approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of code, data, and materials

The code, datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Horn. Obtaining shape from shading information. 1989.

  2. Wu, Z., Li, L.: A line-integration based method for depth recovery from surface normals. Comput. Vis. Graph. Image Process. 43(1), 53–66 (1988). https://doi.org/10.1016/0734-189X(88)90042-4

    Article  Google Scholar 

  3. Sethian, A.J.: A fast-marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–1595 (1996). https://doi.org/10.1073/pnas.93.4.1591

  4. Bähr, M., Breuß, M., et al.: Fast and accurate surface normal integration on non-rectangular domains. Comput. Vis. Media 3(2), 107–129 (2017). https://doi.org/10.1007/s41095-016-0075-z

    Article  MATH  Google Scholar 

  5. Schlüns, K., Klette, R.: Local and global integration of discrete vector fields. In: Advances in Theoretical Computer Vision. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-6867-7_16

  6. Badri, H., Yahia, H.: A non-local low-rank approach to enforce integrability. IEEE Trans. Image Process. 25(8), 3562–3571 (2016). https://doi.org/10.1109/TIP.2016.2570548

    Article  MathSciNet  MATH  Google Scholar 

  7. Karaçali, B., Snyder, W.: Reconstructing discontinuous surfaces from a given gradient field using partial integrability. Comput. Vis. Image Underst. 92(1), 78–111 (2003). https://doi.org/10.1016/S1077-3142(03)00095-X

    Article  Google Scholar 

  8. Horn, B., Brooks, M.J.: The variational approach to shape from shading. Comput. Vis. Graph. Image Process. 33(2), 174–208 (1985). https://doi.org/10.1016/0734-189X(86)90114-3

    Article  MATH  Google Scholar 

  9. Li, W., Bothe, T., Kopylow, C.V., Jüptner, W.P.O.: Evaluation methods for gradient measurement techniques. In: Proceedings of SPIE The International Society for Optical Engineering, 5457 (2004). https://doi.org/10.1117/12.546002

  10. Lei, H., Idir, M., Chao, Z., Kaznatcheev, K., Lin, Z., Asundi, A.: Comparison of two-dimensional integration methods for shape reconstruction from gradient data. Opt. Lasers Eng. 64, 1–11 (2015). https://doi.org/10.1016/j.optlaseng.2014.07.002

    Article  Google Scholar 

  11. Quéau, Y., Durou, J.D., Aujol, J.F.: Normal integration: A survey. J. Math. Imaging Vis. 60, 5 (2018). https://doi.org/10.1007/s10851-017-0773-x

  12. Harker, M., O'Leary, P.: Least squares surface reconstruction from measured gradient fields. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

  13. Liu, S., Liu, T., Hu, L., et al.: Variational progressive-iterative approximation for RBF-based surface reconstruction. Vis. Comput. 37, 2485–2497 (2021). https://doi.org/10.1007/s00371-021-02213-3

    Article  Google Scholar 

  14. Wu, L., Wu, C., Chen, N., Fan, Y.: Least square surface reconstruction method with compact finite difference scheme from measured gradient field. Infrared Laser Eng. (2019). https://doi.org/10.3788/IRLA201948.0825002(in Chinese)

  15. Harker, M., O’Leary, P.: Regularized reconstruction of a surface from its measured gradient field. J. Math. Imaging Vis. 51(1), 46–70 (2015). https://doi.org/10.1007/s10851-014-0505-4

    Article  MATH  Google Scholar 

  16. Quéau, Y., Durou, J.D., Aujol, J.F.: Variational methods for normal integration. J. Math. Imaging Vis. 60(4), 609–632 (2018). https://doi.org/10.1007/s10851-017-0777-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988). https://doi.org/10.1109/34.3909

    Article  MATH  Google Scholar 

  18. Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 435–446 (1990). https://doi.org/10.1109/34.55103

    Article  MATH  Google Scholar 

  19. Scherr, T.: Gradient-based surface reconstruction and the application to wind waves. PhD thesis (2017). https://doi.org/10.11588/heidok.00023979

  20. Talmi, A., Ribak, E.N.: Wavefront reconstruction from its gradients. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 23(2), 288–297 (2006). https://doi.org/10.1364/JOSAA.23.000288

  21. Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software. Wiley, London (1998)

  22. Elster, C.: Exact two-dimensional wave-front reconstruction from lateral shearing interferograms with large shears. Appl. Opt. 39(29), 5353–5359 (2000). https://doi.org/10.1364/AO.39.005353

    Article  Google Scholar 

  23. Volkov, V.V., Zhu, Y., Graef, M.D.: A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5), 411–416 (2002). https://doi.org/10.1016/S0968-4328(02)00017-3

    Article  Google Scholar 

  24. Bon, P., Monneret, S., Wattellier, B.: Noniterative boundary-artifact-free wavefront reconstruction from its derivatives. Appl. Opt. 51(23), 5698–5704 (2012). https://doi.org/10.1364/AO.51.005698

    Article  Google Scholar 

  25. Zuo, C., Chen, Q., Asundi, A.: Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform. Opt. Express 22(8), 9220–9244 (2014). https://doi.org/10.1364/OE.22.009220

    Article  Google Scholar 

  26. Durou, J., Courteille, F.: Integration of a normal field without boundary condition. In: Proceedings of the First International Workshop on Photometric Analysis for Computer Vision, Rio de Janeiro: Brazil (2008)

  27. Li, G., Li, Y., Liu, K., Ma, X., Wang, H.: Improving wavefront reconstruction accuracy by using integration equations with higher-order truncation errors in the Southwell geometry. J. Opt. Soc. Am. A 30(7), 1448–1459 (2013). https://doi.org/10.1364/JOSAA.30.001448

    Article  Google Scholar 

  28. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992). https://doi.org/10.1016/0021-9991(92)90324-R

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, L., Xue, J., Gao, B., Zuo, C., Idir, M.: Spline based least squares integration for two-dimensional shape or wavefront reconstruction. Opt. Lasers Eng. 91, 221–226 (2017). https://doi.org/10.1016/j.optlaseng.2016.12.004

    Article  Google Scholar 

  30. Bao, G., Zhang, L.: Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data. Inverse Prob. 32(8), 085002 (2016). https://doi.org/10.1088/0266-5611/32/8/085002

    Article  MathSciNet  MATH  Google Scholar 

  31. Photometric Stereo Dataset. http://vision.seas.harvard.edu/qsfs/Data.html. Accessed 10 January 2021

  32. Xie, Z.F., Lau, R.W.H., Gui, Y., et al.: A gradient-domain-based edge-preserving sharpen filter. Vis. Comput. 28, 1195–1207 (2012). https://doi.org/10.1007/s00371-011-0668-6

    Article  Google Scholar 

  33. Hu, G., Peng, Q., Forrest, A.: Mean shift denoising of point-sampled surfaces. Vis. Comput. 22, 147–157 (2006). https://doi.org/10.1007/s00371-006-0372-0

    Article  Google Scholar 

  34. Pan, R., Skala, V.: Surface reconstruction with higher-order smoothness. Vis. Comput. 28, 155–162 (2012). https://doi.org/10.1007/s00371-011-0604-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11732016) and Sichuan Science and Technology Program (No. 2018JZ0076).

Funding

Conghai Wu was supported by National Natural Science Foundation of China (No. 11732016) and Sichuan Science and Technology Program (No. 2018JZ0076).

Author information

Authors and Affiliations

Authors

Contributions

L.W.: Drafting the manuscript, Analysis and/or interpretation of data. C.W.: Formal analysis, Software. Y.F.: Supervision, Reviewing and Editing. N.C.: Experiment.

Corresponding author

Correspondence to Yong Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wu, C., Fan, Y. et al. Shape reconstruction from depth gradient with artificially periodized boundaries. Vis Comput 39, 2097–2110 (2023). https://doi.org/10.1007/s00371-022-02467-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02467-5

Keywords