Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

3D reconstruction-oriented fully automatic multi-modal tumor segmentation by dual attention-guided VNet

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Existing automatic contouring methods for primary nasopharyngeal carcinoma (NPC) and metastatic lymph nodes (MLNs) may suffer from low segmentation accuracy and cannot handle multi-modal images correctly. Furthermore, high inter-patient physiological variations and ineffective multi-modal information fusion pose further difficulties. To address these issues, a 3D reconstruction-oriented fully automatic multi-modal segmentation method has been presented to delineate primary NPC tumors and MLNs via a dual attention-guided VNet. Specifically, we leverage a physiologically-sensitive feature enhancement (PFE) module that emphasizes long-range spatial context information in tumor regions of interest and thereby copes with the variability resulting from inter-patient characteristics. This can help extract the 3D spatial feature and facilitate the high-quality reconstruction of 3D geometry of tumors. Next, we develop a multi-modal feature aggregation (MFA) module to describe multi-scale modality-aware features, exploring the effective information aggregation of multi-modal images. To the best of our knowledge, this is the first fully automatic, highly accurate segmentation framework of the primary NPC tumors and MLNs on combined CT-MR datasets. Experimental results on clinical medical datasets validate the effectiveness of our method, and it outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data were utilized with permission for this study and are therefore not available to the public.

References

  1. Joseph, S.S., Aju, D.: A comparative survey on three-dimensional reconstruction of medical modalities based on various approaches. In: Information Systems Design and Intelligent Applications, pp. 223–233, Springer, Singapore (2019)

  2. Le Moal, J., Peillon, C., Dacher, J.-N., Baste, J.-M.: Three-dimensional computed tomography reconstruction for operative planning in robotic segmentectomy: a pilot study. J. Thorac. Dis. 10(1), 196 (2018)

    Article  Google Scholar 

  3. Chang, E.T., Adami, H.-O.: The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol. Prev. Biomark. 15(10), 1765–1777 (2006)

    Article  Google Scholar 

  4. Teguh, D.N., Levendag, P.C., Voet, P.W., Al-Mamgani, A., Han, et al.: Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int. J. Radiat. Oncol.* Biol.* Phys. 81(4), 950–957 (2011)

    Article  Google Scholar 

  5. Daisne, J.-F., Blumhofer, A.: Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation. Radiat. Oncol. 8, 1–11 (2013)

    Article  Google Scholar 

  6. Zhou, J., Chan, K.L., Xu, P., Chong, V.F.: Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 1364–1367. IEEE (2006)

  7. Lee, F.K., Yeung, D.K., King, A.D., Leung, S., Ahuja, A.: Segmentation of nasopharyngeal carcinoma (NPC) lesions in MR images. Int. J. Radiat. Oncol.* Biol.* Phys. 61(2), 608–620 (2005)

    Article  Google Scholar 

  8. Men, K., Chen, X., Zhang, Y., Zhang, T., Dai, J., Yi, J., Li, Y.: Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front. Oncol. 7, 315 (2017)

    Article  Google Scholar 

  9. Lin, L., Dou, Q., Jin, Y.-M., Zhou, G.-Q., Tang, Y.-Q., Chen, W.-L., Su, B.-A., Liu, F., Tao, C.-J., Jiang, N., et al.: Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology 291(3), 677–686 (2019)

    Article  Google Scholar 

  10. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104(3), e158–e177 (2011)

    Article  Google Scholar 

  11. Mohammed, M.A., Abd Ghani, M.K., Hamed, R.I., Ibrahim, D.A.: Review on nasopharyngeal carcinoma: concepts, methods of analysis, segmentation, classification, prediction and impact: a review of the research literature. J. Comput. Sci. 21, 283–298 (2017)

    Article  Google Scholar 

  12. Jiang, H., Diao, Z., Yao, Y.-D.: Deep learning techniques for tumor segmentation: a review. J. Supercomput. 78(2), 1807–1851 (2022)

    Article  Google Scholar 

  13. Huang, B., Chen, Z., Wu, P.-M., Ye, Y., Feng, V., Wong, C.-Y.O., Zheng, L., Liu, Y., Wang, T., Li, Q., et al.: Fully automated delineation of gross tumor volume for head and neck cancer on PET-CT using deep learning: a dual-center study. Contrast Media Mol. Imaging 2018, 8923028 (2018)

    Article  Google Scholar 

  14. Li, Y., Dan, T., Li, H., Chen, J., Peng, H., Liu, L., Cai, H.: Npcnet: jointly segment primary nasopharyngeal carcinoma tumors and metastatic lymph nodes in MR images. IEEE Trans. Med. Imaging 41(7), 1639–1650 (2022)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  16. Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. Array 3, 100004 (2019)

    Article  Google Scholar 

  17. Ma, Z., Zhou, S., Wu, X., Zhang, H., Yan, W., Sun, S., Zhou, J.: Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Phys. Med. Biol. 64(2), 025005 (2019)

    Article  Google Scholar 

  18. Ren, J., Eriksen, J., Nijkamp, J., Korreman, S.: Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol. 60, 1–8 (2021)

    Article  Google Scholar 

  19. Stapleford, L.J., Lawson, J.D., Perkins, C., Edelman, S., Davis, L., McDonald, M.W., Waller, A., Schreibmann, E., Fox, T.: Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int. J. Radiat. Oncol.* Biol.* Phys. 77(3), 959–966 (2010)

    Article  Google Scholar 

  20. Qazi, A.A., Pekar, V., Kim, J., Xie, J., Breen, S.L., Jaffray, D.A.: Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach. Med. Phys. 38(11), 6160–6170 (2011)

    Article  Google Scholar 

  21. Kosmin, M., Ledsam, J., Romera-Paredes, B., Mendes, R., Moinuddin, S., de Souza, D., Gunn, L., Kelly, C., Hughes, C., Karthikesalingam, A., et al.: Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother. Oncol. 135, 130–140 (2019)

    Article  Google Scholar 

  22. Ma, Z., Wu, X., Song, Q., Luo, Y., Wang, Y., Zhou, J.: Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp. Ther. Med. 16(3), 2511–2521 (2018)

    Google Scholar 

  23. Tang, P., Zu, C., Hong, M., Yan, R., Peng, X., Xiao, J., Wu, X., Zhou, J., Zhou, L., Wang, Y.: DA-DSUnet: Dual attention-based dense SU-net for automatic head-and-neck tumor segmentation in MRI images. Neurocomputing 435, 103–113 (2021)

    Article  Google Scholar 

  24. Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R.R., Cheng, M.-M., Hu, S.-M.: Attention mechanisms in computer vision: a survey. Comput. Vis. Media 8(3), 331–368 (2022)

    Article  Google Scholar 

  25. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)

    Article  Google Scholar 

  26. Wang, P., Li, Y., Sun, Y., He, D., Wang, Z.: Multi-scale boundary neural network for gastric tumor segmentation. Vis. Comput. 39(3), 915–926 (2023)

    Article  Google Scholar 

  27. Wang, L., Cai, L., Chen, C., Fu, X., Yu, J., Ge, R., Yuan, B., Yang, X., Shao, Q., Lv, Q.: A novel davnet3+ method for precise segmentation of bladder cancer in MRI. Vis. Comput. 1–13 (2022). https://doi.org/10.1007/s00371-022-02622-y

  28. Wang, X., Girshick, R., Gupta, A., He, v.: Non-local neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

  29. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

  30. Wang, Y., Dou, H., Hu, X., Zhu, L., Yang, X., Xu, M., Qin, J., Heng, P.-A., Wang, T., Ni, D.: Deep attentive features for prostate segmentation in 3d transrectal ultrasound. IEEE Trans. Med. Imaging 38(12), 2768–2778 (2019)

    Article  Google Scholar 

  31. Xu, R., Wang, C., Xu, S., Meng, W., Zhang, X.: Dc-net: dual context network for 2d medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021, pp. 503–513. Springer (2021)

  32. Wang, C., Xu, R., Xu, S., Meng, W., Zhang, X.: Da-net: dual branch transformer and adaptive strip upsampling for retinal vessels segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022, pp. 528–538. Springer (2022)

  33. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, pp. 234–241. Springer (2015)

  34. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O.: 3d u-net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, pp. 424–432. Springer (2016)

  35. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. PP(99), 1–5 (2017)

    Google Scholar 

  36. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

  37. Liu, L., Cheng, J., Quan, Q., Wu, F.-X., Wang, Y.-P., Wang, J.: A survey on u-shaped networks in medical image segmentations. Neurocomputing 409, 244–258 (2020)

    Article  Google Scholar 

  38. Dolz, J., Ben Ayed, I., Desrosiers, C.: Dense multi-path u-net for ischemic stroke lesion segmentation in multiple image modalities. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 271–282. Springer (2019)

  39. Lachinov, D., Vasiliev, E., Turlapov, V.: Glioma segmentation with cascaded unet. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 189–198. Springer (2019)

  40. Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inform. 25(1), 121–130 (2020)

    Article  Google Scholar 

  41. Kavur, A.E., Gezer, N.S., Barış, M., Aslan, S., Conze, P.-H., Groza, V., Pham, D.D., Chatterjee, S., Ernst, P., Özkan, S., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Article  Google Scholar 

  42. Azad, R., Aghdam, E.K., Rauland, A., Jia, Y., Avval, A.H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J.P., Adeli, E., Merhof, D.: Medical image segmentation review: the success of u-net. ArXiv, vol. abs/2211.14830 (2022)

  43. Liu, H., Liu, F., Fan, X., Huang, D.: Polarized self-attention: towards high-quality pixel-wise regression. Neurocomputing 506, 158–167 (2022)

    Article  Google Scholar 

  44. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: convolutional block attention module. In: European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

  45. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3141–3149 (2019)

  46. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder–decoder with atrous separable convolution for semantic image segmentation. In: Computer Vision—ECCV 2018 (Cham), pp. 833–851. Springer (2018)

  47. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., et al.: 3d slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  48. DenOtter, T.D., Schubert, J.: Hounsfield Unit. StatPearls Publishing, Treasure Island, FL (2022)

    Google Scholar 

  49. Zhou, Z., Siddiquee, M., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)

    Article  Google Scholar 

  50. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

  51. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H.R., Xu, D.: Unetr: transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

  52. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 11921006), Beijing Outstanding Young Scientists Program, the National Grand Instrument Project (No. 2019YFF01014400), Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. SML2021SP101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Li or Xueqing Yan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, D., Li, S., Sheng, B. et al. 3D reconstruction-oriented fully automatic multi-modal tumor segmentation by dual attention-guided VNet. Vis Comput 39, 3183–3196 (2023). https://doi.org/10.1007/s00371-023-02965-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02965-0

Keywords