Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-threshold image segmentation algorithm based on Aquila optimization

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Aquila Optimization (AO) is a recently proposed meta-heuristic algorithm, which has been proved to be more competitive than other meta-heuristic algorithms in function optimization and practical applications. However, when solving more complex optimization problems, AO still has the shortcomings of local optimal stagnation and low solving accuracy. To overcome these shortcomings, an improved Aquila Optimization algorithm (IAO) is proposed in this paper. During the initialization of IAO population, a hybrid chaotic mapping mechanism was introduced to initialize the population, improving both the population diversity and the uniformity of the population distribution. The elite dimensional lens imaging learning strategy is introduced for elite individual to improve the optimization quality of the algorithm as elite individual has more useful information than ordinary individuals. Then the probabilistic jump mechanism of simulated annealing algorithm is used to select the position update mode to balance local development and global search. The experimental results on the CEC2005 test function verify the viability and effectiveness of IAO. IAO is used to the multi-threshold segmentation problem based on symmetric cross entropy to demonstrate its capacity to resolve practical optimization problems. The segmentation performance on different reference images shows that IAO has good segmentation performance in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011). https://doi.org/10.1016/j.asoc.2011.05.008

    Article  Google Scholar 

  2. Kaveh, M., Mesgari, M.S., Saeidian, B.: Orchard algorithm (OA): a new meta-heuristic algorithm for solving discrete and continuous optimization problems. Math. Comput. Simul. 208, 95–135 (2023). https://doi.org/10.1016/j.matcom.2022.12.027

    Article  MathSciNet  Google Scholar 

  3. Zhang, Q., Gao, H., Zhan, Z.H., et al.: Growth optimizer: a powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. Knowl. Based Syst. (2023). https://doi.org/10.1016/j.knosys.2022.110206

    Article  Google Scholar 

  4. Morales-Castañeda, B., Zaldivar, D., Cuevas, E., et al.: A better balance in metaheuristic algorithms: Does it exist? Swarm Evol. Comput. (2020). https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  5. Tao, X., Li, X., Chen, W., et al.: Self-adaptive two roles hybrid learning strategies-based particle swarm optimization. Inf. Sci. 578, 457–481 (2021). https://doi.org/10.1016/j.ins.2021.07.008

    Article  MathSciNet  Google Scholar 

  6. Jati, G.K., Kuwanto, G., Hashmi, T., et al.: Discrete komodo algorithm for traveling salesman problem. Appl. Soft Comput. (2023). https://doi.org/10.1016/j.asoc.2023.110219

    Article  Google Scholar 

  7. Bürger, A., Zeile, C., Altmann-Dieses, A., et al.: A Gauss–Newton-based decomposition algorithm for nonlinear mixed-integer optimal control problems. Automatica (2023). https://doi.org/10.1016/j.automatica.2023.110967

    Article  Google Scholar 

  8. Dixit, A., Nanda, A.: An improved whale optimization algorithm-based radial neural network for multi-grade brain tumor classification. Vis. Comput. 38, 3525–3540 (2022). https://doi.org/10.1007/s00371-021-02176-5

    Article  Google Scholar 

  9. Abualigah, L., Yousri, D., Abd, E.M., et al.: Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. (2021). https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  10. Abualigah, L., Abd, E.M., Sumari, P., et al.: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. Appl. (2022). https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  11. Ezugwu, A.E., Agushaka, J.O., Abualigah, L., et al.: Prairie dog optimization algorithm. Neural Comput. Appl. 34, 20017–20065 (2022). https://doi.org/10.1007/s00521-022-07530-9

    Article  Google Scholar 

  12. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Dwarf mongoose optimization algorithm. Comput. Method Appl. M. (2022). https://doi.org/10.1016/j.cma.2022.114570

    Article  Google Scholar 

  13. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer. Neural Comput. Appl. 35, 4099–4131 (2023). https://doi.org/10.1007/s00521-022-07854-6

    Article  Google Scholar 

  14. Utama, D.M., Primayesti, M.D.: A novel hybrid Aquila optimizer for energy-efficient hybrid flow shop scheduling. Results Control Optimiz. (2022). https://doi.org/10.1016/j.rico.2022.100177

    Article  Google Scholar 

  15. Ait-Saadi, A., Meraihi, Y., Soukane, A., et al.: A novel hybrid Chaotic aquila optimization algorithm with simulated annealing for unmanned aerial vehicles path planning. Comput. Electr. Eng. (2022). https://doi.org/10.1016/j.compeleceng.2022.108461

    Article  Google Scholar 

  16. Turgut, O.E., Turgut, M.S.: Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems. Math. Comput. Simul. 206, 302–374 (2023). https://doi.org/10.1016/j.matcom.2022.11.020

    Article  MathSciNet  Google Scholar 

  17. Baş, E.: Binary aquila optimizer for 0–1 knapsack problems. Eng. Appl. Artif. Intel. (2023). https://doi.org/10.1016/j.engappai.2022.105592

    Article  Google Scholar 

  18. Wu, B., Zhou, J., Ji, X., et al.: An ameliorated teaching–learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance. Inform. Sci. 533, 72–107 (2020). https://doi.org/10.1016/j.ins.2020.05.033

    Article  MathSciNet  Google Scholar 

  19. Bhandari, A.K., Singh, V.K., Kumar, A., et al.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014). https://doi.org/10.1016/j.eswa.2013.10.059

    Article  Google Scholar 

  20. Wang, J., Bei, J., Song, H., et al.: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation. Appl. Soft Comput. (2023). https://doi.org/10.1016/j.asoc.2023.110130

    Article  Google Scholar 

  21. Houssein, E.H., Hussain, K., Abualigah, L., et al.: An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowl. Based Syst. (2021). https://doi.org/10.1016/j.knosys.2021.107348

    Article  Google Scholar 

  22. Zhao, S., Wang, P., Heidari, A.A., et al.: Performance optimization of salp swarm algorithm for multi-threshold image segmentation: comprehensive study of breast cancer microscopy. Comput. Biol. Med. (2021). https://doi.org/10.1016/j.compbiomed.2021.105015

    Article  Google Scholar 

  23. Ma, G.Y., Yue, X.F.: An improved whale optimization algorithm based on multilevel threshold image segmentation using the Otsu method. Eng. Appl. Artif. Intel. (2022). https://doi.org/10.1016/j.engappai.2022.104960

    Article  Google Scholar 

  24. Houssein, E.H., Abdelkareem, D.A., Emam, M.M., et al.: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm. Comput. Biol. Med. (2022). https://doi.org/10.1016/j.compbiomed.2022.106075

    Article  Google Scholar 

  25. Zhao, D., Liu, L., Yu, F., et al.: Ant colony optimization with horizontal and vertical crossover search: fundamental visions for multi-threshold image segmentation. Expert Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2020.114122

    Article  Google Scholar 

  26. Chen, Y., Wang, M., Heidari, A.A., et al.: Multi-threshold image segmentation using a multi-strategy shuffled frog leaping algorithm. Expert Syst. Appl. (2022). https://doi.org/10.1016/j.eswa.2022.116511

    Article  Google Scholar 

  27. Zhang, P., Yang, J., Lou, F., et al.: Aptenodytes Forsteri optimization algorithm based on adaptive perturbation of oscillation and mutation operation for image multi-threshold segmentation. Expert Syst. Appl. (2023). https://doi.org/10.1016/j.eswa.2023.120058

    Article  Google Scholar 

  28. Li, C.H., Lee, C.K.: Minimum cross entropy thresholding. Pattern. Recogn. 26, 617–625 (1993). https://doi.org/10.1016/0031-3203(93)90115-D

    Article  Google Scholar 

  29. Brink, A.D., Pendock, N.E.: Minimum cross-entropy threshold selection. Pattern Recogn. 29, 179–188 (1996). https://doi.org/10.1016/0031-3203(95)00066-6

    Article  Google Scholar 

  30. Vasile, A., Coropețchi, I.C., Sorohan, Ș, et al.: A simulated annealing algorithm for stiffness optimization. Procedia Struct. Integr. (2022). https://doi.org/10.1016/j.prostr.2022.02.019

    Article  Google Scholar 

  31. Sheng, M., Wang, Z., Liu, W., et al.: A swarm optimizer with attention-based particle sampling and learning for large scale optimization. J Amb. Intel. Hum. Comput. (2022). https://doi.org/10.1007/s12652-022-04432-5

    Article  Google Scholar 

  32. Nadimi-Shahraki, M.H., Taghian, S., Mirjalili, S.: An improved grey wolf optimizer for solving engineering problems. Expert. Syst. Appl. (2021). https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  33. Liu, J., Shi, J., Hao, F., et al.: A novel enhanced exploration firefly algorithm for global continuous optimization problems. Eng. Comput. Germany 38(Suppl 5), 4479–4500 (2022). https://doi.org/10.1007/s00366-021-01477-6

    Article  Google Scholar 

  34. Dehghani, M., Hubálovský, Š, Trojovský, P.: Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3133286

    Article  Google Scholar 

  35. Long, W., Xu, M., Jiao, J., et al.: A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection. Expert. Syst. Appl. 9, 162059–162080 (2022). https://doi.org/10.1016/j.eswa.2022.117217

    Article  Google Scholar 

  36. Tuo, L., Tian, C., Liu, J., et al.: Extending the Mann–Whitney–Wilcoxon rank sum test to survey data for comparing mean ranks. Stat. Med. (2021). https://doi.org/10.1002/sim.8865

    Article  MathSciNet  Google Scholar 

  37. Tahiri, M.A., Karmouni, H., Bencherqui, A., et al.: New color image encryption using hybrid optimization algorithm and Krawtchouk fractional transformations. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02736-3

    Article  Google Scholar 

  38. Kaya, Y.: A novel method for optic disc detection in retinal images using the cuckoo search algorithm and structural similarity index. Multimed. Tools Appl. 79, 23387–23400 (2020). https://doi.org/10.1007/s11042-020-09080-5

    Article  Google Scholar 

  39. Shubham, S., Bhandari, A.K.: A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed. Tools Appl. 78, 17197–17238 (2019). https://doi.org/10.1007/s11042-018-7034-x

    Article  Google Scholar 

  40. Oliva, D., Cuevas, E., Pajares, G., et al.: A multilevel thresholding algorithm using electromagnetism optimization. Neurocomputing 139, 357–381 (2014). https://doi.org/10.1016/j.neucom.2014.02.020

    Article  Google Scholar 

  41. Suresh, S., Lal, S.: An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Expert Syst. Appl. 58, 184–209 (2016). https://doi.org/10.1016/j.eswa.2016.03.032

    Article  Google Scholar 

  42. Balavand, A.: A new feature clustering method based on crocodiles hunting strategy optimization algorithm for classification of MRI images. Vis. Comput. 38, 149–178 (2022). https://doi.org/10.1007/s00371-020-02009-x

    Article  Google Scholar 

Download references

Acknowledgements

The imagesegmentation datasets employed in this research are kindly provided by https://doi.org/10.1109/TIP.2017.2662206 for which authors express their gratitude. The authors sincerely thank the anonymous reviewers who contributed to the paper through their comments.

Funding

This study is supported by the Natural Science Foundation of China under Grant No. 62273290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairu Guo.

Ethics declarations

Conflict of interest

The authors confirm that no conflict of interest has existed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Wang, J. & Liu, Y. Multi-threshold image segmentation algorithm based on Aquila optimization. Vis Comput 40, 2905–2932 (2024). https://doi.org/10.1007/s00371-023-02993-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02993-w

Keywords