Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

STDPNet: a dual-path surface defect detection neural network based on shearlet transform

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Defect detection systems based on machine vision have been widely used as an essential part of intelligent manufacturing systems. However, in traditional object detection methods that rely on images as input, differences in defect areas, blurred images, and complex background interference can seriously impair detection accuracy. To meet these challenges, this paper proposed a dual-path neural network based on shearlet transform (STDPNet) by taking advantage of shearlet transform in multi-scale analysis and combining it with the improved object detection algorithm proposed in this paper. First, images are multi-scale and multi-directional decomposed with shearlet transform, and multi-directional sub-band information is input to the detection network instead of image information. Then, this paper proposed a dual-path object detection network for the differences between different frequency bands and introduced a transfer learning strategy between paths to improve the model performance. Finally, the training results on the NEU surface defect public dataset show that the mean average precision of STDPNet achieves 86.81% at a detection speed of 44.45 f/s, which exceeds that of Faster R-CNN by 12%. Experiments on different datasets prove that the accuracy is significantly superior to other models, and the proposed method is more advantageous compared to other models in large, fuzzy, and indistinguishable defect types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Song, K., Yan, Y.: A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Appl. Surf. Sci. 285, 858–864 (2013). https://doi.org/10.1016/j.apsusc.2013.09.002

    Article  Google Scholar 

  2. Hao, R., Lu, B., Cheng, Y., Li, X., Huang, B.: A steel surface defect inspection approach towards smart industrial monitoring. J. Intell. Manuf. 32, 1833–1843 (2021). https://doi.org/10.1007/s10845-020-01670-2

    Article  Google Scholar 

  3. Chen, S., Yu, J., Xu, X., Chen, Z., Lu, L., Hu, X., Yang, Y.: Split-guidance network for salient object detection. Vis. Comput. 39, 1437–1451 (2023). https://doi.org/10.1007/s00371-022-02421-5

    Article  Google Scholar 

  4. Neogi, N., Mohanta, D.K., Dutta, P.K.: Review of vision-based steel surface inspection systems. EURASIP J. Image Video Process. 2014(1), 1–19 (2014). https://doi.org/10.1186/1687-5281-2014-50

    Article  Google Scholar 

  5. Schwartz, W.R., da Silva, R.D., Davis, L.S., Pedrini, H.: A novel feature descriptor based on the shearlet transform. In: 2011 18th IEEE International Conference on Image Processing, pp. 1033–1036. IEEE (2011). https://doi.org/10.1109/ICIP.2011.6115600

  6. Dong, Y., Feng, J., Yang, C., Wang, X., Zheng, L., Pu, J.: Multi-scale counting and difference representation for texture classification. Vis. Comput. 34, 1315–1324 (2018). https://doi.org/10.1007/s00371-017-1415-4

    Article  Google Scholar 

  7. Ghorai, S., Mukherjee, A., Gangadaran, M., Dutta, P.K.: Automatic defect detection on hot-rolled flat steel products. IEEE Trans. Instrum. Meas. 62(3), 612–621 (2012). https://doi.org/10.1109/TIM.2012.2218677

    Article  Google Scholar 

  8. Hou, Z., Parker, J.M.: Texture defect detection using support vector machines with adaptive Gabor wavelet features. In: 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05), Vol. 1, pp. 275–280. IEEE (2005). https://doi.org/10.1109/ACVMOT.2005.115

  9. Po, D.Y., Do, M.N.: Directional multiscale modeling of images using the Contourlet transform. IEEE Trans. Image Process. 15(6), 1610–1620 (2006). https://doi.org/10.1109/tip.2006.873450

    Article  MathSciNet  Google Scholar 

  10. Guo, K., Kutyniok, G., Labate, D.: Sparse multidimensional representations using anisotropic dilation and shear operators. Wavelets Splines 14, 189–201 (2006)

    MathSciNet  Google Scholar 

  11. Candes, E.J., Donoho, D.L.: Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges. Stanford Univ Ca Dept of Statistics (2000). https://doi.org/10.1086/116933

  12. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006). https://doi.org/10.1137/05064182X

    Article  MathSciNet  Google Scholar 

  13. Li, L., Wang, L., Wang, Z., Jia, Z., Si, Y., Yang, J., Kasabov, N.: A novel medical image fusion approach based on nonsubsampled shearlet transform. J. Med. Imaging Health Inform. 9(9), 1815–1826 (2019). https://doi.org/10.1166/jmihi.2019.2827

    Article  Google Scholar 

  14. Hu, P., Wang, C., Li, D., Zhao, X.: An improved hybrid multiscale fusion algorithm based on NSST for infrared–visible images. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02844-8

    Article  Google Scholar 

  15. Easley, G., Labate, D., Lim, W.Q.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(1), 25–46 (2008). https://doi.org/10.1016/j.acha.2007.09.003

    Article  MathSciNet  Google Scholar 

  16. Sarkar, D., Gunturi, S.K.: Online health status monitoring of high voltage insulators using deep learning model. Vis. Comput. 38, 4457–4468 (2022). https://doi.org/10.1007/s00371-021-02308-x

    Article  Google Scholar 

  17. Lin, R., Liu, J., Liu, R., Fan, X.: Global structure-guided learning framework for underwater image enhancement. Vis. Comput. 38, 4419–4434 (2022). https://doi.org/10.1007/s00371-021-02305-0

    Article  Google Scholar 

  18. Shi, L., Ma, H., Zhang, J.: Automatic detection of pulmonary nodules in CT images based on 3D Res-I network. Vis. Comput. 37, 1343–1356 (2021). https://doi.org/10.1007/s00371-020-01869-7

    Article  Google Scholar 

  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37. Springer (2016). https://doi.org/10.1007/978-3-319-46448-0_2

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  21. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018). https://doi.org/10.48550/arXiv.1804.02767

  22. Hou, W., Jing, H.: RC-YOLOv5s: for tile surface defect detection. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02793-2

    Article  Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 66 (2015). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  24. Wu, J., Le, J., Xiao, Z., Zhang, F., Geng, L., Liu, Y., Wang, W.: Automatic fabric defect detection using a wide-and-light network. Appl. Intell. 51, 4945–4961 (2021). https://doi.org/10.1007/s10489-020-02084-6

    Article  Google Scholar 

  25. Chen, K., Zeng, Z., Yang, J.: A deep region-based pyramid neural network for automatic detection and multi-classification of various surface defects of aluminum alloys. J. Build. Eng. 43, 102–523 (2021). https://doi.org/10.1016/J.JOBE.2021.102523

    Article  Google Scholar 

  26. Lin, D., Li, Y., Prasad, S., Nwe, T.L., Dong, S., Oo, Z.M.: CAM-UNET: class activation MAP guided UNET with feedback refinement for defect segmentation. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2131–2135. IEEE (2020). https://doi.org/10.1109/ICIP40778.2020.9190900

  27. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M. Yolov4: optimal speed and accuracy of object detection (2020). https://doi.org/10.48550/arXiv.2004.10934.

  28. Zhang, X., Wan, T., Wu, Z., Du, B.: Real-time detector design for small targets based on bi-channel feature fusion mechanism. Appl. Intell. 52, 2775–2784 (2022). https://doi.org/10.1007/s10489-021-02545-6

    Article  Google Scholar 

  29. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007). https://doi.org/10.1137/060649781

    Article  MathSciNet  Google Scholar 

  30. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018). https://doi.org/10.1109/CVPR.2018.00913

  31. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12993–13000 (2020). https://doi.org/10.1609/aaai.v34i07.6999

  32. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  33. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.) Computer Vision—ECCV 2014, pp. 740–755. Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-10602-1_48

  34. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint (2017). https://doi.org/10.48550/arXiv.1711.05101

  35. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint (2020).https://doi.org/10.48550/arXiv.2010.16061

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (No. 51975130) and Basic Scientific Research Project of Education Department of Liaoning Province (LJKMZ20220915).

Author information

Authors and Affiliations

Authors

Contributions

DA conceptualized the study; RH helped in methodology and writing—original draft preparation; RH, LF were involved in formal analysis and investigation; RH, ZL contributed to writing—review and editing; DA, PZ acquired the funding; ZC helped in resources; DA, PZ supervised the study.

Corresponding author

Correspondence to Peng Zhou.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, D., Hu, R., Fan, L. et al. STDPNet: a dual-path surface defect detection neural network based on shearlet transform. Vis Comput 40, 5841–5856 (2024). https://doi.org/10.1007/s00371-023-03139-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03139-8

Keywords