Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A novel deformable B-spline curve model based on elasticity

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The physically based deformable curve models are widely used to simulate thin one-dimensional objects in computer graphics, interactive simulation, and surgery simulation. These models consider objects to be rods described by an adapted frame curve that contains the rod’s centerline as well as the orthonormal material frame of each point on the centerline. However, they pose challenges including fine discretization, redundancy in modeling slender rods, and maintaining accuracy and stability. In this paper, we propose a novel physically based deformable B-spline curve model that regards curves as rods consisting of parallel fibers and derive elastic potential energy only from curves’ representations. Therefore, our model does not take rotation-based adapted frames into consideration and reduces degree of freedom. Our model divides the curves into infinitesimal elements in parameter space and derives the analytical relationship between elastic potential energy function and curves’ representations through the change of total length of infinitesimal elements’ fibers. Our model can support material attributes in the real world and maintain the reality and stability of the solution. We employ isogeometric analysis to solve the dynamic equations derived from our deformable model as isogeometric analysis is suitable to solve the dynamic equations of parametric models. We compare the scenarios in the real world, our model’s simulation results, and other model’s results to demonstrate the reality of our models. The results are in line with expectation. We design several examples to demonstrate our models’ applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors confirm that all data generated or analyzed during this study are included in this published article.

References

  1. Pai, D.K.: Strands: Interactive simulation of thin solids using cosserat models. In: Computer Graphics Forum, vol. 21, pp. 347–352. Blackwell Publshing, Inc., Oxford (2002)

  2. Hadap, S., Magnenat-Thalmann, N.: Modeling dynamic hair as a continuum. Comput. Graph. Forum 20, 329–338 (2001)

    Article  Google Scholar 

  3. Grégoire, M., Schömer, E.: Interactive simulation of one-dimensional flexible parts. In: ACM Symposium on Solid and Physical Modeling 2006, pp. 95–103 (2006)

  4. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 1–12 (2008)

    Article  Google Scholar 

  5. Korner, K., Audoly, B., Bhattacharya, K.: Simple deformation measures for discrete elastic rods and ribbons. Proc. R. Soc. A 477(2256), 20210561 (2021)

    Article  MathSciNet  Google Scholar 

  6. Panneerselvam, K., Rahul, De, S.: A constrained spline dynamics (CSD) method for interactive simulation of elastic rods. Comput. Mech. 65, 269–291 (2020)

  7. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)

    Article  Google Scholar 

  8. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  9. Terzopoulos, D., Qin, H.: Dynamic nurbs with geometric constraints for interactive sculpting. ACM Trans. Graph. 13(2), 103–136 (1994)

    Article  Google Scholar 

  10. Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. ACM Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

  11. Jiang, J., Sheng, B., Li, P., Ma, L., Tong, X., Wu, E.: Real-time hair simulation with heptadiagonal decomposition on mass spring system. Graph. Models 111, 101077 (2020)

    Article  Google Scholar 

  12. Cover, S.A., Ezquerra, N.F., O’Brien, J.F., Rowe, R., Gadacz, T., Palm, E.: Interactively deformable models for surgery simulation. IEEE Comput. Graph. Appl. 13(6), 68–75 (1993)

    Article  Google Scholar 

  13. Barr, A.H.: Global and local deformations of solid primitives. In: Readings in Computer Vision, pp. 661–670 (1987)

  14. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. ACM SIGGRAPH Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  15. Coquillart, S.: Extending free-form deformation: a sculpting tool for 3D geometric modeling. SIGGRAPH 90, 187 (1990)

    Google Scholar 

  16. Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    Article  MathSciNet  Google Scholar 

  17. Soler, C., Martin, T., Sorkine-Hornung, O.: Cosserat rods with projective dynamics. Computer Graph. Forum 37, 137–147 (2018)

    Article  Google Scholar 

  18. Grégoire, M., Schömer, E.: Interactive simulation of one-dimensional flexible parts. Comput. Aided Des. 39(8), 694–707 (2007)

    Article  Google Scholar 

  19. Sano, T.G., Pezzulla, M., Reis, P.M.: A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions. J. Mech. Phys. Solids 160, 104739 (2022)

    Article  MathSciNet  Google Scholar 

  20. Umetani, N., Schmidt, R., Stam, J.: Position-based elastic rods. In: ACM SIGGRAPH 2014 Talks, pp. 1–1 (2014)

  21. Deul, C., Kugelstadt, T., Weiler, M., Bender, J.: Direct position-based solver for stiff rods. Comput. Graph. Forum 37, 313–324 (2018)

    Article  Google Scholar 

  22. Theetten, A., Grisoni, L., Andriot, C., Barsky, B.: Geometrically exact dynamic splines. Comput. Aided Des. 40(1), 35–48 (2008)

    Article  Google Scholar 

  23. Lenoir, J., Meseure, P., Grisoni, L., Chaillou, C.: Surgical thread simulation. ESAIM Proc. Surveys 12, 102–107 (2002)

    Article  Google Scholar 

  24. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  25. Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Comput. Aided Des. 10(6), 356–360 (1978)

    Article  Google Scholar 

  26. Dyn, N., Gregory, J.A., Levin, D.: Analysis of uniform binary subdivision schemes for curve design. Constr. Approx. 7, 127–147 (1991)

    Article  MathSciNet  Google Scholar 

  27. Prusinkiewicz, P., Samavati, F., Smith, C., Karwowski, R.: L-system description of subdivision curves. Int. J. Shape Model. 9(01), 41–59 (2003)

    Article  Google Scholar 

  28. Hornus, S., Angelidis, A., Cani, M.P.: Implicit modelling using subdivision-curves. Vis. Comput. 19(2–3), 94–104 (2003)

    Article  Google Scholar 

  29. Yang, X.: Point-normal subdivision curves and surfaces. Comput. Aided Geom. Design 104, 102207 (2023)

    Article  MathSciNet  Google Scholar 

  30. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals (2005)

  31. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1–4), 3–47 (1996)

    Article  Google Scholar 

  32. Wang, S., Soares, C.G.: Numerical study on the water impact of 3d bodies by an explicit finite element method. Ocean Eng. 78, 73–88 (2014)

    Article  Google Scholar 

  33. Zeng, Z.P., Liu, F.S., Wang, W.D.: Three-dimensional train-track-bridge coupled dynamics model based on the explicit finite element method. Soil Dyn. Earthq. Eng. 153, 107066 (2022)

    Article  Google Scholar 

  34. Poelert, S., Valstar, E., Weinans, H., Zadpoor, A.A.: Patient-specific finite element modeling of bones. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 227(4), 464–478 (2013)

    Article  Google Scholar 

  35. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  Google Scholar 

  36. Monaghan, J.J.: Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 44, 323–346 (2012)

    Article  MathSciNet  Google Scholar 

  37. Nguyen, V.P., Anitescu, C., Bordas, S.P., Rabczuk, T.: Isogeometric analysis: an overview and computer implementation aspects. Math. Comput. Simul. 117, 89–116 (2015)

    Article  MathSciNet  Google Scholar 

  38. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA, (2009). https://books.google.co.jp/books?id=9Q9y0Xtz5E4C

  39. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  40. Spetz, A., Tudisco, E., Denzer, R., Dahlblom, O.: Isogeometric analysis of soil plasticity. Geomaterials 7(3), 96–116 (2017)

  41. Bombarde, D.S., Agrawal, M., Gautam, S.S., Nandy, A.: Hellinger–Reissner principle based stress-displacement formulation for three-dimensional isogeometric analysis in linear elasticity. Comput. Methods Appl. Mech. Eng. 394, 114920 (2022)

    Article  MathSciNet  Google Scholar 

  42. Li, X., Zhang, J., Zheng, Y.: Nurbs-based isogeometric analysis of beams and plates using high order shear deformation theory. Math. Probl. Eng. 2013 (2013)

  43. Weeger, O., Yeung, S.K., Dunn, M.L.: Isogeometric collocation methods for cosserat rods and rod structures. Comput. Methods Appl. Mech. Eng. 316, 100–122 (2017)

    Article  MathSciNet  Google Scholar 

  44. Carrera, E., Miguel, A., Pagani, A.: Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures. Int. J. Numer. Meth. Eng. 112(13), 1889–1908 (2017)

    Article  MathSciNet  Google Scholar 

  45. Timoshenko, S.: Strength of materials, part II. Advanced theory and problems 245 (1941)

  46. Whewell, W.: Analytical Statics. A Supplement to the Fourth Edition of an Elementary Treatise on Mechanics (1847)

  47. Terzopoulos, D., Fleischer, K.: Deformable models. Vis. Comput. 4(6), 306–331 (1988)

    Article  Google Scholar 

  48. Gunakala, S.R., Comissiong, D., Jordan, K., Sankar, A.: A finite element solution of the beam equation via matlab. Int. J. Appl. 2(8), 80–88 (2012)

    Google Scholar 

Download references

Funding

The authors want to thank the anonymous reviewers for their constructive comments. This research was partially supported by the National Nature Science Foundation of China (No.61972041, No.62072045), the National Key R &D Program of China (No.2020YFC1523300), the Innovation &Transfer Fund of Peking University Third Hospital (No.BYSYZHKC2021110), and the Beijing Municipal Science and Technology Commission and Zhongguancun Science Park Management Committee (No.Z221100002722020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongke Wu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 40902 KB)

Appendices

Appendix A: The derivative of external potential energy

Suppose the surface is under conservative forces, so the potential energy has general functions:

$$\begin{aligned} E_{\text{ ext }}=\int {{\textbf {F}}}(x,y,z)du \end{aligned}$$
(A1)

where F(xyz) is the potential density function. We derive the expression of the derivative through the Jacobian matrix. For arbitrary generalized coordinates \(p_{k}\), the derivative \(\frac{\partial E_{\text{ ext }}}{\partial p_{k}}\) can be transformed by the chain rule:

$$\begin{aligned} \begin{aligned} \frac{\partial E_{\text{ ext } }}{\partial p_{k}}&=\int \left[ \frac{\partial x}{\partial p_{k}}, \frac{\partial y}{\partial p_{k}}, \frac{\partial z}{\partial p_{k}}\right] \left[ \frac{\partial {{\textbf {F}}}}{\partial x}, \frac{\partial {{\textbf {F}}}}{\partial y}, \frac{\partial {{\textbf {F}}}}{\partial z}\right] ^{T} \end{aligned} \end{aligned}$$
(A2)

By integrating the expression of \(\frac{\partial E_{\text{ ext }}}{\partial p_{k}} (k=0,1,...n)\), we can derive \(\frac{\partial E_{\text{ ext }}}{\partial P}\) as follows:

$$\begin{aligned} \frac{\partial E_{\text{ exp } }}{\partial {{\textbf {P}}}}{} & {} =\int {{\textbf {J}}}^{T}\left( \frac{\partial {{\textbf {F}}}}{\partial x},\frac{\partial {{\textbf {F}}}}{\partial y},\frac{\partial {{\textbf {F}}}}{\partial z}\right) ^{T} du \nonumber \\{} & {} =-\int {{\textbf {J}}}^{T}{{\textbf {f}}}(x,y,z)du \end{aligned}$$
(A3)

where f(xyz) is the external force field density.

Appendix B: Gauss–Legendre quadrature

Gauss–Legendre quadrature is a method that provides a discrete approximation of the definite integral of a function. For integrating over the interval \([-1,1]\), the rule is stated as:

$$\begin{aligned} \int _{-1}^{1} f(x) d x \approx \sum _{i=1}^{n} \omega _{i} \textrm{f}\left( x_{i}\right) \end{aligned}$$
(B4)

The parameter n represents the number of sample points and \(\omega _{i}\) are quadrature weights. \(x_{i}\) are the roots of the nth Legendre polynomial.

We employ Gauss–Legendre quadrature to obtain the quadrature of the function on the right side of the equation and can further derive the quadrature of the original function from the above equation. To balance accuracy and computational time, we choose three sample points and the form of the quadrature formula is shown as follows:

$$\begin{aligned} \int _{-1}^{1} f(x) d x \approx \frac{5}{9} f\left( -\frac{\sqrt{15}}{5}\right) +\frac{8}{9} f(0)+\frac{5}{9} f\left( \frac{\sqrt{15}}{5}\right) \nonumber \\ \end{aligned}$$
(B5)

We define \(\omega _{1} = \omega _{3} = \frac{5}{9}\), \(\omega _{2} = \frac{8}{9}\). For parameter u whose domain is [0, 1], we define that \(u_{1} = (1-\frac{\sqrt{15}}{5}) / 2\), \(u_{2} = 0.5\), \(u_{3} = (1 + \frac{\sqrt{15}}{5}) / 2\).

For B-spline curve, the form of the quadrature formula is:

$$\begin{aligned} \int _{0}^{1} f(u) du \approx \sum _{i=1}^{3} \omega _{i} \textrm{f}\left( u_{i}\right) \end{aligned}$$
(B6)

where the values of \(\omega _{i}\) and \(u_{i}\) are listed above.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, X. & Wu, Z. A novel deformable B-spline curve model based on elasticity. Vis Comput 40, 6093–6110 (2024). https://doi.org/10.1007/s00371-023-03155-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03155-8

Keywords