Abstract
We consider the following two classes of simple graphs: open necklaces and closed necklaces, consisting of a finite number of cliques of fixed orders arranged in path-like pattern and cycle-like pattern, respectively. In these two classes we determine those graphs whose index (the largest eigenvalue of the adjacency matrix) is maximal.
Similar content being viewed by others
References
Belardo F., Li Marzi E.M., Simić S.K.: Some results on the index of unicyclic graphs. Linear Algebra Appl. 416(2–3), 1048–1059 (2006)
Biyikoğlu, T., Leydold, J.: Graphs with given degree sequence and maximal spectral radius. Electron. J. Combin. 15, #R119 (2008)
Biyikoğlu, T., Leydold, J.: Semiregular trees with minimal Laplacian spectral radius. Linear Algebra Appl. (2009, in press). doi:10.1016/j.laa.2009.06.014
Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs—Theory and Applications, III revised and enlarged edition. Johan Ambrosius Bart. Verlag, Heidelberg (1995)
Cvetković D., Rowlinson P., Simić S.: Eigenspaces of Graphs. Cambridge University Press, Cambridge (1997)
Cvetković D., Rowlinson P., Simić S.K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423(1), 155–171 (2007)
Cvetković D., Simić S.K.: Towards a spectral theory of graphs based on the signless Laplacian. I. Publ. Math. Inst. (Beograd), Nouvelle Série 85(99), 19–33 (2009)
Cvetković, D., Simić, S.K.: Towards a spectral theory of graphs based on the signless Laplacian, II. Linear Algebra Appl. (2009, in press). doi:10.1016/j.laa.2009.05.020
Harary F.: Graph Theory. Addison-Wesley, Reading (1969)
Hoffman A.J., Smith J.H.: On the spectral radii of topologically equivalent graphs. In: Fiedler, M. (eds) Recent Advances in Graph Theory, pp. 273–281. Academia Praha, Prague (1975)
Merris R.: Laplacian matrices of graphs. Linear Algebra Appl. 197(198), 143–176 (1994)
Simić S.K., Li Marzi E.M., Belardo F.: On the index of caterpillars. Discrete Math. 308, 324–330 (2008)
Yuan, X.Y., Wu, B.F., Xiao, E.L.: The modifications of trees and the Laplacian spectrum. J. East China Norm. Univ. Natur. Sci. (in Chinese), Ed. June (2), pp. 13–18 (2004)
Zhang X.D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308, 3143–3150 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Belardo, F., Li Marzi, E.M., Simić, S.K. et al. On the Index of Necklaces. Graphs and Combinatorics 26, 163–172 (2010). https://doi.org/10.1007/s00373-010-0910-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-010-0910-4
Keywords
- Adjacency spectrum
- Signless Laplacian spectrum
- Caterpillars
- Unicyclic graphs
- Line graphs
- Largest eigenvalue